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Abstract. We propose distribution aware neuro-symbolic verification
as a way to restrict verification processes to the data distribution (or
other distributions). We propose the NICE Laplacianizing flow as suit-
able density model because of two major properties. First, we show that
the log-density function associated to a NICE Laplacianizing flow is
piece-wise affine and hence applicable for SMT based approaches using
linear arithmetic. Second, each NICE flow maps the upper log-density
level sets of the data distribution to the upper log-density level sets of
the latent Laplacian, which gives rise to potential applications within
interval bound propagation methods.

1 Introduction

Neuro-symbolic verification has recently emerged as a new technique to verify
semantic properties of neural networks [6,8,10]. In a nutshell, reference networks
are used to express high-level properties which can be addressed as predicates
in an otherwise logical specification. Popular ways of performing the verifica-
tion are the reduction to SMT solving or the use of interval-bound propagation
methods. Low-level properties such as adversarial robustness are expressible in
the neuro-symbolic framework in the same way as high-level properties such as
”a self-driving car will always hold in front of a stop sign”. In case of a violation
of the property, many verification methods are able to provide concrete counter
examples. However, searching for counter examples in the entire feature space
might return instances which are not in the support of the data distribution. Xie
et al. [10] propose an auto-encoder based method to ensure that counterexam-
ples are contained in the data distribution. We build upon this idea and refine
it to yield probabilistically interpretable results. We achieve this by replacing
the auto-encoder with a density estimator and adjust the verification task to
verify properties only for the upper density level set of a specified probability
mass. Since computing upper-level density sets for a given estimator is compu-
tationally infeasible in general, we employ a special flow architecture based the
non-linear independent component estimator (NICE) by Dinh et al. [2] and show
that upper-level density sets of the target distribution have very simple latent
representations in these flows, which makes them accessible for SMT based on
linear arithmetic and interval propagation based techniques.

We believe that restricting verification tasks to the support of a meaningful
input distribution is very important for the verification of real world systems
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since in practice areas outside of the support of the input distribution might
be meaningless and we might therefore not be interested in the behavior of the
model in this area. Additionally, the far tail of a distribution is by nature poorly
represented in data, which leads to high epistemic uncertainty about the tail even
after seeing the data. We would expect that a model which takes uncertainty
because of the lack of data into account produces much less confident predictions
in the tail of the distribution, which is an behavior that we might want to verify
separately.

While auto-encoder implicitly capture the data distribution through the re-
construction error, they are not trained to align the reconstruction error with the
underlying density function. Hence, upper- and lower reconstruction error level
sets are not probabilistically interpretable. The natural replacement to solve this
issue are upper density level sets L↑

D(t) = {x ∈ Rd | pD(x) > t}, where pD is
the density of the input distribution. In this case we can even bound the failure
probability relative to the reference distribution: A successful verification of the
property on L↑

D(t) implies a failure probability of at most 1− pD(L↑
D(t)).

2 Applications

2.1 Verification within the Data Distribution

This is our motivating example from the introduction. In a practical scenario, we
would like to specify acceptable failure probability p rather than an acceptable
log-density threshold. Hence, we propose the following abstract procedure for
verification of machine learning models within the center of the data distribution:
1. For a given p ∈ [0, 1], determine the log-density log tp with pD(L↑

D(tp)) = p.
2. Verify that ∀x : log pD(x) > log tp → φ(x)

Where φ is the neuro-symbolic property that we want to verify. Note that since
we are able to sample from our flow model, estimating log tp can easily be done
empirically with high accuracy [9,1].

2.2 Verification of Correct Epistemic Uncertainty Quantification

As we argued earlier, for the far tail of the data distribution there are usually no
samples available. Hence, any model trained purely from data has never gotten
information about these areas. Without any inductive bias, the uncertainty es-
timates given e.g. by a classifier should converge towards a uniform distribution
as we move further outwards in the tail [5,4]. However, it is known that many
deep neural network training methods produce badly calibrated networks with
overconfident predictions, especially in areas of high epistemic uncertainty [3,7].
Our approach can be used to verify that the network takes epistemic uncertainty
into account. E.g. for a binary classifier C:

1. For a given (very small) p ∈ [0, 1], determine the log-density log tp with
pD(L↓

D(tp)) = p.
2. Verify that ∀x : log pD(x) ≤ log tp → C(x) ∈

[
1
2 − ϵ, 1

2 + ϵ
]

for a given
tolerance ϵ.
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