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Abstract. As malware threats continue to increase in both complexity
and sophistication, the adoption of advanced detection methods, such as
deep neural networks (DNNs) for malware classification, has become in-
creasingly vital to safeguard digital infrastructure and protect sensitive
data. In order to measure progress in this safety-critical landscape, we
propose two malware classification benchmarks: a feature-based bench-
mark and an image-based benchmark. Feature-based datasets provide
a detailed understanding of malware characteristics, and image-based
datasets transform raw malware binary data into grayscale images for
swift processing. These datasets can be used for both binary classifica-
tion (benign vs. malicious) as well as classifying known malware into
a particular family. This paper, therefore, introduces two benchmark
datasets for binary and family classification with varying difficulty lev-
els to quantify improvements in malware classification strategies. Key
contributions include the creation of feature and image dataset bench-
marks, and the validation of a trained binary classification network using
the feature dataset benchmark. Benchmarks as well as example training
code are available1.
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1 Introduction

Malware is any software designed with malicious intent. Various types of harm-
ful software include stealing sensitive data (data theft [6, 4]), monitoring activity
and passwords (espionage [15]), the creation of a ‘botnet’ (Distributed Denial
of Service (DDoS) [1]), stealing data and holding it for ransom (ransomware
attacks [7]), using someone else’s system to mine cryptocurrency (cryptojack-
ing [11]), and distributing spam [5]. To mitigate the harmful effects of malware,
defense mechanisms rely upon the ability to distinguish between benign soft-
ware and malicious software. If malware can be detected, it can be effectively
isolated and neutralized before it has a chance to compromise the system. This
early detection is not only pivotal for securing individual systems but also plays a
crucial role in preventing the spread of malware across networks, thereby fortify-
ing overall cybersecurity infrastructure. It also facilitates the process of reverse

1 Code: https://github.com/pkrobinette/malware benchmarks



engineering the malware to understand its functionality and to devise robust
countermeasures for similar threats in the future.

As the sophistication of these threats continues to increase, more advanced
methods for detection and classification have become necessary. One such method
is the application of deep neural networks (DNN) for malware classification [8,
13, 3, 12, 10, 2]. Neural network malware classifiers are usually trained on either
feature datasets or image datasets. Feature datasets consist of numerical or cat-
egorical attributes extracted from malware samples, such as opcode frequencies,
system calls, file sizes, and other static or dynamic features. These feature sets
are designed to capture the distinctive behaviors or properties of malicious soft-
ware. On the other hand, image datasets involve a transformation of the raw
binary data of malware files into grayscale images, which depict the visual pat-
terns underlying the malware’s binary structure.

Both approaches present their own advantages. Feature-based datasets can
provide a detailed overview of the malware’s characteristics, facilitating a deeper
understanding of the malware’s functionality and behavior. This approach, how-
ever, can be time-consuming and requires expert knowledge to identify and ex-
tract the most relevant features. In contrast, image-based datasets can be pro-
cessed quickly and do not necessitate the tedious task of feature selection.

While feature datasets are most commonly used for binary classification of
either benign or malicious, image datasets tend to also be used to classify mal-
ware families. This is particularly useful, as malware belonging to the same
family often share a common code base and exhibit similar patterns of behav-
ior. By identifying the malware family, cybersecurity experts can gain insights
into the malware’s likely origin, its potential behavior, and the most effective
countermeasures. Additionally, this classification aids in tracking the evolution
of different malware strains and anticipates emerging threats.

As threats continue to evolve and the methods we use to combat against them
improve as well, it is imperative to provide benchmark datasets in this domain
to quantify improvements in both classification strategies as well as verification
tools. In addition to datasets utilized in this paper, which are representative
of the state-of-the-art in this domain, the property verified is also an impor-
tant factor as well. As this is the first benchmark for malware classification, the
verification process needs to be thorough and comprehensive, ensuring that the
system’s robustness is not solely reliant on specific data but can generalize well
across varied and potentially unseen malicious threats. Thus, this paper intro-
duces two benchmark datasets (a feature dataset and an image dataset), which
evaluate how robust a classifier is against adversarial attacks and dataset shifts.
The contributions of this work, therefore, are the following:

1. Introduction of a feature dataset benchmark for binary classification, con-
sisting of three different difficulty levels.

2. Introduction of an image dataset benchmark for family classification, con-
sisting of three different difficulty levels.

3. A trained binary classification network verified using the feature dataset
benchmark.



2 Preliminaries

In this section, we introduce robustness and the malware datasets used for bench-
marking: (1) a feature dataset, which represents malware samples as vectors of
data such as byte entropy and string length, and (2) an image dataset, which
represents malware samples as grayscale images.

2.1 Feature Datasets

Malware feature datasets are composed of ‘features’ extracted from collected
samples, which can be either benign or malicious. Common features include file
properties, binary content, API calls, network activities, registry key modifica-
tions, and embedded resources. These data points form a comprehensive profile
of each software sample, providing vital clues about its behavior, origin, and po-
tential harm. By analyzing these features, cybersecurity experts can accurately
classify software as benign or malicious and identify novel malware variants.
In addition to static features, feature datasets can include dynamic attributes,
such as runtime behavior, system interactions, and state changes over time. Dy-
namic attributes provide insights into how the software behaves when executed,
including changes made to files, registries, and the system memory. They can
also capture network connections initiated, services used, and any suspicious
activities like process injection, encryption of user files, or attempts to evade
detection. These dynamic behaviors, combined with static features, help cre-
ate a more holistic understanding of the malware’s functionality and impact,
enhancing the effectiveness of threat detection and prevention mechanisms.

BODMAS While there are many publicly available feature datasets, we uti-
lize the Blue Hexagon Open Dataset for Malware Analysis, or BODMAS [14].
BODMAS contains 77,142 benign samples (marked as label 0) and 57,293 ma-
licious samples (marked as label 1). Each sample is represented by a vector of
2381 features extracted using both dynamic and static analysis methods with
the aid of the LIEF project [9]. Table 1 shows the seven distinct datatype cate-
gories contained in the dataset. These data types are used to distinguish between
benchmark difficulty levels.

2.2 Image Datasets

As extracting static and dynamic features requires expert knowledge and is time-
intensive, researchers have also utilized image alternatives. A sample binary is
segmented into bytes, and these bytes are then converted into grayscale pixel
values. For instance, if the binary file contains the sequence 0100010010010111,
this would be chunked into 8 bits (a byte): [01000100, 10010111], and converted
to decimal: [68, 151]. These would be two-pixel values in the corresponding
grayscale image of the binary. Image-level representations provide a quick alter-
native to static and dynamic analysis, while still providing valuable insights into
the structure and patterns inherent in the binary data. The graphical patterns
formed by these binary sequences can be distinctive, enabling models to learn



Table 1. The data types contained in the BODMAS dataset. Each feature data type
has a distinct range, which demonstrates the need for a range-specific perturbation.

Feature Type Count Max Range
Pre-Scale

Max Range
Post-Scale

Example

Continuous 5 [5.0, 2.0e5] [-0.1, 304.6] Entropy of the file

Categorical 8 [0.0, 6.5e4] [-0.0, 124.3] Machine type

Hash Categorical 560 [-647.6, 15.4] [0.0, 361.0] Hash of original file

Discrete with
Large Range

34 [0.0, 4.3e9] [-0.0, 261.6] Number of occurrences
of each byte value
within the file

Binary 5 [0.0, 1.0] [-2.1, 0.5] Presence of debug sec-
tion

Hash Categorical
Discrete

1531 [-8.0e6, 1.6e9] [-327.9, 164.0] Hash of target system
type

Memory Related 16 [0.0, 4.0e9] [-0.1, 307.5] Size of the original file

Null 222 [-31.0, 60.0] [-0.9, 160.4] —

and identify specific behaviors and characteristics of the represented software.
This approach significantly reduces the time and complexity of feature extraction
while maintaining a high level of analysis precision.

Malimg We utilize the Malimg Dataset in this work. The Malimg dataset is
composed of 9339 malware images from 25 different malware families [8]. Table 2
shows the breakdown of samples per family as well as the family hierarchies. For
instance, Allaple.A and Allaple.L are two different families that fall under the
same type of attack: Worm. As there are large differences between the number
of represented samples (Allaple.A: 2949 samples vs. Skintrim.N : 80 samples),
this adds to the difficulty of verifying specific malware families.

2.3 Robustness

As malware attacks evolve, we want classification systems that are robust against
changing adversarial attacks. To quantify this goal, these benchmarks focus on
a robustness verification property – given changes in a sample (changing ad-
versarial attacks), can the classification system correctly classify samples even
in the presence of change? For instance, let a neural network classifier be de-
noted as f , an input x ∈ Rn×m, target y ∈ RN where N is the number of
classes, perturbation parameter ϵ ∈ R, and an input set R containing xp such
that Xp = {x : ||x − xp||∞ ≤ ϵ} which represents the set of all possible pertur-
bations of x where ||x − xp||∞ is the L∞ norm. A model is robust at x if all
the perturbed inputs xp are classified to the same label as y, e.g., the system is
robust if f(xp) = f(x) = y for all xp ∈ Xp. In this way, we can verify that a
classification system will be useful in future situations, not just against known
malware patterns in the present.



Table 2. Malimg dataset details.

No. Family Family Name No. of Samples

01 Dialer Adialer.C 122
02 Backdoor Agent.FYI 116
03 Worm Allaple.A 2949
04 Worm Allaple.L 1591
05 Trojan Alueron.gen!J 198
06 Worm:AutoIT Autorun.K 106
07 Trojan C2Lop.P 146
08 Trojan C2Lop.gen!G 200
09 Dialer Dialplatform.B 177
10 Trojan Downloader Dontovo.A 162
11 Rogue Fakerean 381
12 Dialer Instantaccess 431
13 PWS Lolyda.AA 1 213
14 PWS Lolyda.AA 2 184
15 PWS Lolyda.AA 3 123
16 PWS Lolyda.AT 159
17 Trojan Malex.gen !J 136
18 Trojan Downloader Obfuscator.AD 142
19 Backdoor Rbot!gen 158
20 Trojan Skintrim.N 80
21 Trojan Downloader Swizzor.gen!E 128
22 Trojan Downloader Swizzor.gen!I 132
23 Worm VB.AT 408
24 Trojan Downloader Wintrim.BX 97
25 Worm Yuner.A 800

3 Benchmarks

In this section, we introduce each of the malware benchmarks in more detail.

3.1 Malware Feature Benchmark

The malware feature benchmark consists of 200 samples taken from a stratified
sampling of the entire BODMAS dataset, giving a split of 43% malicious samples.
While the specific samples do not have varying levels of difficulty, the data type
used during the perturbation as well as the size of the perturbation lends itself
to levels of verification difficulty. The level, corresponding data type, and epsilon
used for each benchmark are described in Table 3.

The L∞ perturbation of size ϵ∗ is applied to the range of each feature of the
corresponding datatype. For example, if feature 1 has a range [3, 567], the L∞
bound with ϵ∗ = 0.1% would be ±0.56 = 0.1% × (567 − 3). ϵ∗ here represents
the modification to the range of each feature. For all samples s and for the
designated features f (dependent on benchmark level) within that sample, the



Table 3. Malware feature dataset details (BODMAS).

Benchmark Level Perturbation Data Type Perturbation Size(ϵ∗)

Level 1 Continuous 0.01
Level 2 Continuous and Discrete 0.025
Level 3 All 0.001

Table 4. Malware image dataset details (Malimg).

Benchmark Level Perturbation Size(ϵ)

Level 1 5
Level 2 10
Level 3 15

perturbation ϵ used for verification is defined as ϵ∗ of the range of that feature,
i.e., ϵs,f = ϵ∗ranges,f . This provides a more feature realistic perturbation to each
sample. Even though the perturbed features will all be of the same datatype,
the ranges for those features can be drastically different, making it important to
consider the range for each particular feature of the corresponding datatype.

3.2 Malware Image Benchmark

Whereas the malware feature dataset verifies different data types and pertur-
bation sizes, the malware image dataset only focuses on verifying different per-
turbation sizes in each level. The verification dataset consists of 5 randomly
sampled images from each malware family, which makes a total of 125 images of
pixel values in the range [0, 255]. Each level consists of an L∞ perturbation on
the pixel values of the verification image. A perturbation size of ϵ = 3 indicates
that the value of each pixel in the image is allowed to be changed by ±3. The
level and corresponding perturbation sizes ϵ are shown in Table 4.

4 Benchmark Demonstration

To demonstrate the use of these benchmarks, we demonstrate the verification
of a binary neural network classifier trained on the BODMAS dataset. First,
we train a neural network with an input layer of 2381, one hidden layer of size
32, and an output layer of size 2 (binary classification). This model is trained
with an Adam optimizer and a learning rate of 0.001 for 20 epochs. The testing
performance of this trained model is shown in Table 5.

From these results, the model performs well on the test set, as indicated by
the high value for each metric. We then verify this model using the level 2 feature
benchmark, which results in the successful robustness verification of 103 out of
200 images2. This means that only about 50% of the tested samples were verified

2 Code available here: https://github.com/pkrobinette/malware benchmarks



Table 5. Binary neural network classifier model performance.

Metric Value

Accuracy 1.0
Precision 0.99

Recall 1.0
F1 1.0

within the given perturbation; this does not bode well for the tested classifier as
we would want a higher verification rate to ensure confidence in its robustness,
especially in real-world scenarios where diverse adversarial attacks might be more
prevalent. This result highlights the importance of using benchmarks to compare
trained classifiers. Just based on the metrics, the trained model performs well.
Considering the verification, however, our model may not be as robust as we
would like.

5 Conclusion

In this work, we introduce two malware classifier benchmarks: a feature bench-
mark and an image benchmark. Each benchmark consists of 3 different difficulty
levels. The feature benchmark is distinguished by the data types perturbed,
whereas the image benchmark is distinguished by perturbation size. These novel
benchmarks will be pivotal in quantifying improvements in the safety-critical
domain of malware classification.
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