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Abstract

We revisit the principle of Smart Sampling which makes it possible to apply
Statistical Model Checking on stochastic and non-deterministic systems. We point
out difficulties in the design of the initial algorithm and we propose effective
solutions to solve them. Our contributions are implemented in the Plasma tool.
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1 Introduction

Computer systems occupy an increasingly predominant position in our daily lives.
Such systems find themselves embedded in strategic applications ranging from the
connected home to assisted driving. In view of this situation, any failure of the system
can have serious consequences both from an economic and human point of view. It is
therefore necessary to deploy techniques whose purpose is to ensure that the system
satisfies a set of security/safety requirements.

A first way to validate the requirements of a computer system is to test the confor-
mity of its outputs with respect to predefined inputs. These techniques are known as
very effective and they made it possible to detect numerous safety and security bugs
both at code and specification models [3, 15]. Unfortunately, this technology does not
generally cover all the behaviors of the system or even quantify the degree of confi-
dence that can be given to it [26]. Another problem is that testing relies on predefined
requirements, which makes it hard to detect cyber security issues [21]. This means
that they cannot be applied in critical certification processes where the calculation of
the degree of certainty is necessary to obtain the certificate [13].

Another approach consists in modeling the system by means of a mathematical
object such as (extensions of) transition systems [8]. Such representations make it
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possible to model the failures of the system as well as quantitative information or
even interactions with the environment [8]. In this paper, we consider Markov Deci-
sion Processes (MDP), an extension of Markov Chains (MC) with non determinism
features. The model allows us to represent the failures by means of probabilities and
the choices of environment thanks to nondeterministic actions. In this context, the
validation process consists in finding the environment (aka the scheduler) which max-
imizes or minimizes the probability of satisfying a requirement [30, 20]. To do so, one
can then explore all the behaviors of the system by means of formal verification tech-
niques such as (quantitative) model checking [8]. These exhaustive approaches make
it possible to detect all errors in the system and obtain full guarantee. However, they
suffer from the problem of the so-called ”state-space explosion”, which makes them
inapplicable in many strategic and complex cases.

Another approach is to use Statistical Model Checking (SMC) to solve this problem
[31, 25, 22]. A SMC algorithm consists in monitoring a finite number of executions of
the system and using theoretical results from statistics such as the Chernoff bound
to obtain certainty on the probability of satisfying the property. SMC, which is a
compromise between testing and formal verification, has been applied in a wide variety
of fields ranging from the validation of complex railway and aviation systems to the
analysis of medical and space components (see [9, 29, 4, 5] for illustrations). One of
the main challenges of SMC is to minimize the number of simulations to be performed
[17]. Another difficulty is to extend the approach to systems that are not purely
probabilistic, such as Markov Decision processes or Timed Automata [14, 16].

A series of recent works [10, 16] has made it possible to extend the SMC algorithms
to the case of MDPs. Most of these algorithms use deep learning techniques that are
very effective but require knowledge of the system and often complex modeling of the
schedulers to be analyzed. It is for this reason that we have proposed another approach
called “Smart Sampling” [10]. The idea of Smart Sampling is to represent schedulers
in a simple way, with seeds and hash functions. We give ourselves an initial budget
of schedulers and we apply the SMC algorithm on the MC which results from each
scheduler’s choices. The fifty percents of the best schedulers are then kept and the
operation is repeated until the scheduler for which SMC minimizes or maximizes the
requirement to be validated is found. Smart Sampling has been implemented in Plasma
[24]. The approach is known to be simpler and faster than its competitors. It has
been applied to various extensions of MC and requirements, including cost estimation.
Unfortunately, this pure simulation approach suffers from a major preciseness problem.
Indeed, it generally does not find the best scheduler but rather a scheduler which
calculates the average probability of satisfying the property. This makes the approach
inapplicable in certain strategic areas where extremes must be known.

In this article we revisit the Smart Sampling algorithm and we propose practical
improvements. In particular, we observe that different reduction factors improve accu-
racy without impacting performance. Moreover, we point out an operating error of the
Chernoff bound in the initial algorithm and we show empirically that the latter has
important consequences on the result of the algorithm. All of our contributions have
been implemented in Plasma [24] and validated through examples that illustrate the
problems and the advantages in a concrete way.
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2 Background

Markov Decision Processes allow to model both controllable non-determinism and
uncontrollable non-determinism, which is necessary to modelize situations where an
agent-based system operates in a dynamical environment with uncertainty. A Markov
Decision Process (MDP) is a tuple (S, s0, A, {Pa}a∈A) where S is a finite set of states,
s0 is the initial state, A is a finite set of (labelled) actions and {Pa}a∈A) is a set of
probabilities over pairs of states such as for all Pa ∈ A, there exists a unique state
s ∈ S for which Pa(s, s

′) can be greater than zero. A MDP can be seen as a directed
graph whose edges start from a single vertex but can point to multiple vertices, with a
probability associated with each of those possible destinations. In any state (vertex) s,
a state s′ is reachable if there exists an action (edge) a from s to s′ with Pa(s, s

′) > 0.
A (finite) path is a (finite) sequence of states (s1, s2, ...) such that si+1 is reachable
from si for all i ∈ N0. A (finite) trace is a (finite) path such that s1 = s0. We’ll use
the notations Tn and T∞ for the set of all finite traces of length n and the set of infi-
nite traces respectively. For each simulation of a MDP, a trace is produced. To resolve
the controllable non-determinism of a MDP, i.e. the necessity to select the actions
which will be chosen during one simulation, one can refine a MDP into a Markov
chain with the choice of a scheduler. In practice, a scheduler can be interpreted as
a possible interaction with the environment (a possible choice of a user for instance)
or as a chosen strategy for the execution of the system to achieve a specific goal. A
scheduler, also called policy, is a function which indicates at any point during the gen-
eration of a trace which is the action that needs to be considered to determine the
next state of the trace. The most basic kind of schedulers are memoryless schedulers
whose choices only depends on the current state, i.e. functions of the form π : S → A.
For reachability problems, memoryless schedulers suffice, but they form a strict subset
of history-dependent schedulers. Finite-memory schedulers take as inputs finite paths
of a predetermined maximum length n, i.e. are functions of the for π : (si)1≤i≤n → A.
Infinite-memory schedulers take as inputs finite traces with no predetermined maxi-
mum length, i.e. are functions of the for π : T∞ → A. Schedulers that do not truly
resolve the controllable non-determinism are also possible and are called probabilistic
schedulers, i.e. functions of the form π : S → Dist(A), where Dist(A) is the set of
probability distributions over A. A standard probabilistic scheduler is one that choose
the uniform distribution over all the available actions in each state. In what follows,
unless specified otherwise, scheduler is used as a shortcut for memoryless scheduler.

The choice of a scheduler turns a MDP into a Markov Chain. A Markov chain
(MC) is a Markov decision process with exactly one available action for each state.
Once a MDP is specified as a Markov chain, we can automatically define the associated
probability space (Ω,F , µ). Ω = T∞ is the set of all infinite traces of the Markov chain,
F is the σ-algebra generated by subsets Ω of the form Ω(s1,...,sn) = {(t1, ..., tn, ...) ∈
Ω | t1 = s1, ..., tn = sn}, and µ : F → [0, 1] is the distribution over F which verifies

for any finite trace (t0, ..., tn) ∈ Tn: µ(Ω(t0,...,tn)) =
∏n−1

i=0 Pati
(ti, ti+1), with ati being

the unique action available in the Markov chain at state ti. Such a distribution µπ can
be built for each scheduler π of a MDP, and for any (finite) trace T of the MDP the
probability µπ(T ) is the probability that a simulation of the MDP under the policy π
will produce the trace T .
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In this work we use Bounded Linear Temporal Logic (BLTL) to specify the prop-
erties of a system. BLTL is a variant of Linear Temporal Logic (LTL), which is itself
a modal extension of propositional logic. The addition of only one modal operator is
sufficient to fully define BLTL. A minimal BNF grammar for the syntax of BLTL is:

ϕ, ψ ::= ⊥ | α | ¬ϕ | ϕ ∧ ψ | ϕUk ψ

α denotes an atomic proposition. In the context of statistical model checking, those can
be simply defined as a list of logical variables {αs}s∈S with αs true if and only if the
current state is s, but more complex atomic proposition can be defined, for example
with fluents. ¬ and ∧ are the basic operators of propositional logic for the negation
and the conjunction. Uk (with k ∈ N) is the (bounded) until operator. The semantics
of BLTL operators are defined in a similar way to what is done for linear temporal
logic. In the context of SMC, the models for the formulas of BLTL are usually taken
as pairs (T, z) with T being a (infinite) trace of a Markov Chain and z being a starting
index for the sequence T . The semantics of the ¬ and ∧ operators are the same than
with propositional logic, while the semantic of the Uk operator formalizes the intuitive
idea of “true if the first formula is true until the second one becomes true, in a a time
interval of length k”. More formally, for a trace T : (T, z) |= ϕUk ψ iff there exists
j ∈ N with z ≤ j ≤ z + k such that (T, i) |= ϕ for all z ≤ i ≤ j and (T, i) |= ψ for all
j < i ≤ k. Just as the ϕ∨ψ operator can be defined as ¬(¬ϕ∧¬ψ) within propositional
logic, additional operators can be defined for (bounded) linear temporal logic. The
most common ones are X ϕ, ϕF k ψ and ϕGk ψ, the next, the finally/eventually and
the globally/always operators, respectively defined as ⊤U1ϕ, ⊤Ukϕ, ¬(⊤Uk¬ϕ).

Given a BLTL formula ϕ

associated with a MDP, a
score can be given to any
scheduler π by considering
the quantity

∫
Ω
1T |=ϕ dµπ,

i.e. the exact probability
that the property of the sys-
tem formalized by the for-
mula ϕ is verified for a ran-
dom possible execution of
the MDP under the policy π.

s0
b

s1

a

s2
c

d
e0.70.3

1 1

10.5 0.5

A MDP with 3 states and 5 actions. The schedulers

that choose the action c in state s0 have a score of 0

for the formula X(¬αs0) ⇒ (αs0U
3αs1), while any

scheduler which picks action a has a score of 1 −
(0.7)3 = 0.657. No memoryless scheduler can pro-

duce a trace that satisfies G8(F 4αs1 ∧F 4αs2), but

it is possible with a history-dependent scheduler.

Problem 1. Given a MDP (S, s0, A, {Pa}a∈A), a BLTL formula ϕ and a specific class
of schedulers Π, how to find an optimal schedulers π+ and π−, defined as:

π+ ∈ argmax
π∈Π

∫
Ω

1T |=ϕ dµπ π− ∈ argmin
π∈Π

∫
Ω

1T |=ϕ dµπ

That is, a scheduler (not necessarily unique) with the greatest/lowest possible score,
i.e. the greatest/lowest probability to generate traces for which the property ϕ is true.
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3 The Lightweight Scheduler Approach

The most straightforward method to solve Problem 1 with SMC is to first build a
large number of schedulers, compute the score of each of those schedulers, then output
one with the highest score [10]. However, despite its simplicity, this approach calls for
multiple remarks. First, the right representation of schedulers must be chosen. For
very big models representing all schedulers as full maps does not scale well in terms of
memory space. As showed in [10], one efficient alternatives is to represent schedulers
as seeds for a pseudo-random number generator, whose size can be adapted in function
of the expected theoretical number of schedulers.

Second, the size and complexity of the models of real-world systems may prohibit
the computation of the exact theoretical scores of the schedulers [25], and those must
then be estimated with SMC. Note that the non-exhaustive nature of the evaluation
process for the schedulers implies that statistical guarantees are necessary for those
estimations. Indeed, depending on how complex, sensitive or critical the system which
needs to be verified is, those estimations must have relatively high or low precisions and
confidence levels. To characterise those estimations, the notion of (ϵ, δ)-estimation is
useful: p̂ is a (ϵ, δ)-estimation of the true score p of a scheduler π if P (|p̂−p| > ϵp) < δ.
All SMC algorithms require values for the hyperparameters ϵ and δ, explicitly or
implicitly. A smaller ϵ means that the error of the estimations of the scores of the
schedulers will be smaller, while a smaller δ means that the probability that one such
estimation is not within the error bound is lower. In both cases, decreasing the values
of those hyperparameters implies that more simulations must be performed.

Lastly, the performances of such an elementary SMC algorithm are extremely
dependant of the number of schedulers which are generated and whose scores are esti-
mated. If that number is low with respect to the total number of possible schedulers
for the system under scrutiny, then the chances that an optimal scheduler can be found
among the schedulers generated by the algorithm is low as well. This can be solved by
allocating a smaller fraction of the simulation budget of the algorithm to each evalua-
tion of the schedulers, i.e. by producing less traces for each scheduler. Unfortunately,
that pseudo-solution is useless for real-world applications of SMC, since those usually
demand estimations with very high precision and confidence level. Therefore, many
SMC algorithms, instead of asking for a total simulation budget size, ask for values
for the hyperparameters ϵ and δ and then try to minimize the simulation budget they
need to guarantee those levels of precision and confidence. This can be done a priori,
by exploiting statistical results such as the Chernoff bound [28, 10], or a posteriori,
for instance with adaptive stopping algorithms[11, 12, 27].

3.1 The Original Smart Sampling Algorithm from [10]

The original Smart Sampling Algorithm from [10] given in Algorithm 1 is the ver-
sion of the algorithm tailored to find optimal schedulers with maximal scores. The
condition on the per-iteration budget is derived from the Chernoff Bound to ensure
(ϵ, δ)-estimations [28, 10].
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Algorithm 1 Original Smart Sampling Algorithm from [10]

Require:
MDPM and BLTL formula ϕ
precision and confidence level ϵ and δ
per-iteration budget B ≥ ln(2/δ)/(2ϵ2)

Ensure:
P and p̂max, with P final population,
and p̂max an (ϵ, δ)-approximation of an optimal score

1: N ← ⌈
√
B⌉ ; M ← ⌈

√
B⌉

2: P ← {M schedulers sampled uniformly at random}
3: for π ∈ P do
4: for 1 ≤ i ≤ N do
5: Tπ

i ← Simulate(M, ϕ, π)
6: end for
7: end for
8: R← {(π, n̂π) | π ∈ P, n̂π = |{Tπ

i | Tπ
i |= ϕ}|}

9: p̂max ← max
(π,n̂π)∈R

n̂π/N

10: N ← ⌈1/p̂max⌉ ; M ← ⌈Bp̂max⌉
11: P ← {M schedulers sampled uniformly at random}
12: for π ∈ P do
13: for 1 ≤ i ≤ N do
14: Tπ

i ← Simulate(M, ϕ, π)
15: end for
16: end for
17: R← {(π, n̂π) | π ∈ P, n̂π = |{Tπ

i | Tπ
i |= ϕ}|}

18: P ← {π ∈ P | n̂π > 0}

19: R← {(π, 0) | π ∈ P} ; i← 0 ; confidence← 1
20: while confidence > δ ∧ |P | > 1 do
21: i← i+ 1
22: Mi ← |P |
23: Ni ← 0
24: while confidence > δ ∧Ni < ⌈B/Mi⌉ do
25: Ni ← Ni + 1
26: confidence← 1− (1− e−2ϵ2Ni)Mi

27: for π ∈ P do
28: Tπ

Ni
← Simulate(M, ϕ, π)

29: end for
30: end while
31: R← {(π, n̂π) | π ∈ P, n̂π = |{Tπ

i | Tπ
i |= ϕ}|}

32: p̂max ← max
(π,n̂π)∈R

n̂π/N

33: P ← {π ∈ P | n̂π is one of the greatest ⌊|P |/2⌋ values in R}
34: end while
35: return P, p̂max
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In Step 1 (lines 1 to 9), the per-iteration budget B is used once to generate ⌈
√
B⌉

schedulers (line 2) and produce ⌈
√
B⌉ traces for each of those schedulers (line 5). The

traces which satisfy the property ϕ are counted to compute a rough estimation of the
schedulers’ scores (line 8), and the greatest value among those estimations is selected
as a first estimation p̂max for the score of a (near-)optimal scheduler. In Step 2 (lines
10 to 18), the naive estimation p̂max is used to balance the simulation budget so to
maximize the probability of producing traces with near-optimal schedulers (line 10)
[10]. Then, the initial population of the algorithm is generated (line 11). A preliminary
iteration is then performed to abandon the schedulers (line 14) that don’t produce
any trace which satisfies the property ϕ at least once (line 18). Finally, in Step 3 (lines
19 to 34), the main loop of the algorithm happens here, which doesn’t stop until the
population has been reduced to one scheduler or until the confidence level that has
been reached, as approximated with the Chernoff Bound (line 26), is smaller than δ
(line 20). First, the scores of the schedulers are reset (line 19). At each step of the
loop, the iteration population is updated (line 22) and as long as the the number of
simulations which have been realized at this step is smaller than ⌈B/Mi⌉ (line 24), an
additional trace is generated for each scheduler (line 28). At the end of each loop, the
results are updated (line 31), the approximation of the optimal probability is updated
and the population is cut in a way that only half of the population of schedulers, those
with the best scores, are kept.

3.2 Beyond the First Implementation of the Smart Sampling
Algorithm

We reproduced two of the experiments of the original paper of the Smart Sampling
algorithm [10], the analyses of the IEEE 802.11 Wireless LAN Protocol (WLAN) and
the Gossip Protocol (GOSSIP)1.

We were interested in observing how a greater or smaller reduction factor, defined
as the denominator of the fraction of the population which is preserved from step to
step, could impact the performance of the algorithm. On one hand, increasing the
reduction factor should a priori lead to poorer performances but a faster execution
time for the algorithm: a higher number of schedulers discarded at each step means
that near optimal schedulers which can be present in the initial population might be
abandoned by mistake (especially at the first step), but it also means that there are
fewer steps to the algorithm and that the total simulation budget will be a smaller
multiple of the per-iteration budget. On the other hand, decreasing the reduction
factor should a priori lead to better performances but a slower execution time for
the algorithm: a smaller number of schedulers discarded at each step means that
near-optimal schedulers which can be present in the initial population have a smaller
chance to be abandoned by mistake, but it also means that there are more steps to
the algorithm and that the total simulation budget will be a greater multiple of the
per-iteration budget.

1See https://www.prismmodelchecker.org/download.php for a description
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Since the WLAN and GOS-
SIP models used have already
been evaluated thoroughly with
exhaustive model checking tech-
niques [20, 19, 18], the theoretical
score of an optimal scheduler is
known for both of those experi-
ments. Figure 1 shows the pro-
portion of runs for the Smart
Sampling algorithm that man-
aged to output an estimation
which was within the error bound
of the actual optimal score in
function of a varying reduction
factor, with ϵ = 0.01, δ = 0.1 and
a per-iteration budget of 15000.

Fig. 1: Original Smart Sampling algorithm performance
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Surprisingly, the expected correlations can not be found. Moreover, a performance
drop phenomenon can be seen around specific values. The location of those values
depends of the values of the parameters of the Smart Sampling algorithm. After
analysis of the implementation and individual executions of the algorithm, our con-
clusion is that the original implementation of the Smart Sampling algorithm is flawed
in three ways. First, because it is designed to immediately stop as soon as the per-
iteration budget divided by the number of remaining schedulers is greater than the
Chernoff Bound, the algorithm can terminate much earlier than anticipated with a
still diverse population of schedulers. Second, because barely enough traces are at
that point produced so that the estimations of the schedulers of the final population
are valid (ϵ, δ)-estimations, most of them are badly estimated relatively to each oth-
ers. This results in individual outputs for the original Smart Sampling algorithm with
great variance. Those two first flaws make for drastic changes in performance when
the ratios between the size of the initial sample and powers of the reduction factor are
close to integers, up to the last step of the algorithm. A slight change in one of those
ratios can severely impact how soon the algorithm stops and how well the schedulers
are evaluated at the last step. We hypothesize that this potential problem was not
noticed with the first version of the Smart Sampling because the fixed value of 2 which
was originally chosen for the reduction factor was low, making the algorithm’s progress
smooth in the sense that the population size decreases from step to step relatively
slowly. Third, additional tailor-made experiments showed that the original implemen-
tation of the Smart Sampling algorithm suffers from another critical weakness: noise.
For models with in-built noise, i.e. for which all schedulers have a fixed low chance
to produce failing traces, performance is often extremely poor with non-generous per-
iteration budget. Indeed, when the ratio between the initial population size and the
per-iteration is close to 1, the first evaluation of the schedulers is so vulnerable to
the noise that the first wave of discarded schedulers can be essentially regarded as
random. Even if (near-)optimal schedulers are present in the sample at the start, the
probability they are abandoned before the second step of the algorithm is high.
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4 New Lightweight Algorithms for Statistical Model
Checking

To improve the Smart Sampling algorithm, we modified how the Chernoff bound test
dictates the termination of the algorithm, and we explored three ideas: artificially
inflating the simulation budget for the first step, applying a simulated annealing strat-
egy, and reintroducing new random schedulers at specific steps. Those modifications
were implemented in PLASMA (Platform for Learning and Advanced Statistical Model
checking Algorithms), a plug-in based interface for statistical model checking [24].

Unless specified otherwise, all experiments were realized for the WLAN and the
GOSSIP models, with ϵ = 0.01, δ = 0.1 and a per-iteration budget of 15000. For both
models, since the theoretical optimal scheduler and its score are known, the goal was
to compute the probability that the algorithm produces an estimation which deviates
from the theoretical optimal solution by at most ϵ and check if the probability is
indeed lower or equal to δ. That is, to verify if the algorithm actually produces (ϵ, δ)-
estimations. The results, which include information about the execution times as well,
are averaged over up to 100 runs (depending on the experiment). The experiments
were performed on a 8 GB machine with 4 cores running at 3.2 GHz.

4.1 Modification of the Chernoff Bound Test

Three approaches were considered to deal with the problems arising from the potential
early termination of the Smart Sampling algorithm due to the Chernoff bound test:
keep the early termination but with a better evaluation of the schedulers of the final
population (option 1), ignore the early termination but scale down the simulation
budget with respect to the accumulated confidence level for the remaining iterations,
(option 2), or completely ignore the early termination (option 3).

Option 1 leaves the main loop of Algorithm 1 intact, but adds a last loop of x
simulations for each scheduler once the Chernoff bound test makes the main loop
end. Then, the modified algorithm reevaluate the schedulers and order them by their
scores one last time before returning the result. Option 2 requires to remove the
Chernoff bound test at line 20, and to alter the condition for the simulation loop from
“confidence > δ ∧ Ni < ⌈B/Mi⌉” to “Ni < F (confidence, ⌈B/Mi⌉)”, with F a pre-
determined fixed function. Option 3 completely removes the Chernoff bound test both
at line 20 and at line 24.

All three options were initially compared to each other fairly in the sense that the
design choices (number x and function F ) were made so that the number of additional
simulations was identical between the options. For option 2, any test function F which
scales linearly with confidence quickly leads to insignificant per-scheduler simulation
budgets for the subsequent steps of the algorithm. Therefore, the type of function
which was the most experimented with is a function which returns ⌈B/Mi⌉ as long
as confidence is greater than δ, then returns (a fraction or a multiple of) the per-
scheduler simulation budget of the last iteration of the main loop for which confidence
was still greater than δ.

Option 1 is not only the option that doesn’t fit the original philosophy of the
algorithm, but it is also the option which produced the worse results. Because option
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1 allocates all the additional budget evenly between the remaining schedulers of the
final population, the sampling process ceases to prioritize the most promising sched-
ulers. Option 3 produced the best results consistently, whereas option 2 produced good
results as well when the multiple of the test function F was large enough. However,
when the multiple of the test function was taken as 1, option 3 was always a bet-
ter choice in terms of results while the difference in total simulation budgets between
option 2 and option 3 was systematically small. Indeed, unless the per-iteration budget
parameter is unnecessary large with respect to ϵ and δ, the Smart Sampling algorithm
generally completes most of its potential steps before the Chernoff bound condition is
verified. Therefore, option 3 is the option we suggest and have chosen for the modifi-
cation of the Smart Sampling algorithm. A small verification can be added at the level
of the preconditions to warn the user or ensure that the per-iteration budget cannot
be excessively large with respect to ϵ and δ when the user specifies a per-iteration
budget instead of letting the algorithm fix it by itself.

Figure 2 is the equivalent of
Figure 1 for the Smart Sam-
pling algorithm modified with
option 3. Not only the mod-
ification improves the per-
formances of the algorithm
noticeably, but it eliminates
the performance drop phe-
nomenon as well. The modifi-
cation is particularly impact-
ful with high values for the
reduction factor, to the point
that the algorithm’s per-
formance barely diminishes
as the the reduction factor
increases.

Fig. 2: Modified Smart Sampling algorithm performance
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Figures 3 and 4 show the execution times for 100 runs of the Smart Sampling
algorithm for the WLAN and GOSSIP experiments, for both versions of the algorithm.

Fig. 3: Execution times (WLAN)
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Fig. 4: Execution times (GOSSIP)
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For any given reduction factor, the execution times of the modified version of
the algorithm are on average 13% greater than those for the original version of the
algorithm. However, since it allows for a much larger reduction factor without a loss in
performance, the modified version applied with a large reduction factor outperforms
the original version (with a reduction factor of 2) both in terms of results and speed.

In conclusion, we hypothesize that the ideal new version of the Smart Sampling
algorithm is the third suggested modification, applied with a reduction factor larger
than 2. Since the trade-off between performance and speed is inevitable as the reduc-
tion factor increases, we cannot give a perfect universal value for the reduction factor.
Nevertheless, our recommendation is to take it at least as large as 5 or even 10, for
we could never observe noticeable loss in performance at those values in any of our
experiments (including those not discussed in this paper), while already providing a
significant speed-up to the algorithm. With a reduction factor of 5, the algorithm
is accelerated by a factor of ln(5)/ ln(2) ≃ 2.32. With a reduction factor of 10, the
algorithm is accelerated by a factor of ln(10)/ ln(2) ≃ 3.32.

4.2 Other optimizations

To further improve the Smart Sampling algorithm, we first looked at one of its other
weaknesses discussed in section 3.2: its fragility with respect to noise. During the first
step of the algorithm, it is frequent that the algorithm drops near-optimal schedulers
because their evaluation is based on so few traces that those evaluations have a high
probability to be unreliable. When realistic simulation budgets are taken into account,
the number of times each scheduler is simulated during the first iteration can even be
close (if not equal) to 1.

Algorithm 2 Additional Budget at First Step

20: while |P | > 1
21: i← i+ 1
22: Mi ← |P |
23: Ni ← 0
24: if i == 1
25: while Ni < F (⌈B/Mi⌉) ▷ F is a fixed function
26: Ni ← Ni + 1
27: for π ∈ P do
28: Tπ

Ni
← Simulate(M, ϕ, π)

29: end for
30: end while
31: R← {(π, n̂π) | π ∈ P, n̂π = |{Tπ

i | Tπ
i |= ϕ}|}

32: p̂max ← max
(π,n̂π)∈R

n̂π/N

33: P ← {π ∈ P | n̂π is one of the greatest ⌊|P |/(reduction factor)⌋ values in R}
34: else
35: while Ni < ⌈B/Mi⌉) ▷ New condition for the main loop
36: Ni ← Ni + 1
37: for π ∈ P do ▷ New condition for the simulation loop
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To counter that problem, a very simple solution was first tested: providing the
algorithm with additional simulation budget for the first step. This means slightly
modifying the condition of the simulation loop at line 24 of Algorithm 1 to introduce
an exception for the first iteration. Algorithm 2 shows the main modifications which
were brought to the code of Algorithm 1 to remove the Chernoff bound test and
introduce additional sampling at the first iteration.

The kind of test function F which was mostly tested is a collection of simple multi-
plicative functions with a multiplicative parameter a ranging from 2 to 10. Depending
on whether the chosen per-iteration budget allows for a large or small per-scheduler
simulation budget at the first step, a lower or greater value should be taken for that
multiplicative parameter. Indeed, if the per-scheduler simulation budget at the first
step is satisfactory to begin with, picking a value as low as 2 is the right choice as
to minimize the additional computing cost. However, if the per-scheduler simulation
budget at the first step is close to 1, then taking it as large as 10 (or even larger) is
necessary. In general, the function F can be of the form F (x) = min(K, ax), with a
rather large and K being a upper bound on the per-scheduler budget for the first step,
for a jack-of-all-trades solution.

On custom small scale models designed with a lot of in-built noise, providing
additional simulation budget for the first iteration improved the Smart Sampling algo-
rithm’s probability of identifying a (near-)optimal scheduler by around 6% with a = 2,
15% with a = 3, 26% with a = 5 and 30% with a = 10. Those numbers are average
over reduction factors ranging from 2 to 100, albeit the gains in performance were
generally more important with large (> 10) reduction factors.

Fig. 5: More budget at first iteration strat-
egy (WLAN)
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Fig. 6: More budget at first iteration strat-
egy (GOSSIP)
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Figures 5 and 6 show the impact of providing additional simulation budget for
the first iteration on the probability for the Smart Sampling algorithm to output
a near-optimal scheduler for the WLAN and GOSSIP models. Despite the limited
importance of the noise weakness of the Smart Sampling algorithm for those models,
we can observe that even though the effect of providing additional simulation budget
for the first iteration is less noticeable than when noise is involved, in the case of the
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GOSSIP experiment, that strategy has positive impact on the algorithm’s performance
nonetheless. However, as can been seen with Figure 6, which was produced with a
very reduced set of experiments of 30, that strategy still suffers from the from the
instability of the statistical model checking process.

Fig. 7: Execution times (WLAN)
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Fig. 8: Execution times (GOSSIP)
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Of course, that small positive benefit is not worth if it comes with a prohibitive
increase in computational costs. However, as shown with figures 7 and 8, the increase
in computational costs is limited, at least for small values of the multiplicative factor a.
Which is not a surprise: especially with low reduction factors, the number of iterations
of the algorithm is generally large enough that adding the equivalent of a few artificial
iterations at the start does not grow the total simulation budget by a significant
margin. Accross all reduction factors, the increase is negligible with a = 2 and a = 3,
around 25% with a = 5 on average and between 30% and 150% with a = 10. We find
difficult to advocate for such an increase in computational costs in any scenario, even
when the model is not expected to be “noisy”. However, as the potential benefit in
some situations is very valuable and the trade-off in terms of speed barely noticeable
for small values of the multiplicative parameter a, we consider adopting the additional
budget for first iteration strategy as the new baseline for the Smart Sampling algorithm
the right choice. Fixing a = 3 appears to be a good starting point, with a suggestion
to the user to push the value of that parameter up to 10 when working with noisy
models.

Trying to extend the additional budget at first step strategy to a simulated anneal-
ing strategy was attempted. Instead of only inflating the simulation budget of the first
iteration, one can try to artificially rebalance the total simulation budget between the
different steps of the algorithm instead of allocating a constant per-iteration budget
to all iterations. Skewing towards early iterations and towards the late iterations were
both tested. The conclusion is that skewing towards the early iterations is often the
best course of action, to the point that the best results were obtained when the skew
was so much in favor of the first iteration that it was practically equivalent to the
much simpler strategy which consists in providing additional budget at the first step.
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Fig. 9: Random scheduler reintroduction
strategy (WLAN)
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Fig. 10: Random scheduler reintroduction
strategy (GOSSIP)
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Lastly, the idea of reintroducing schedulers as the algorithm progresses was also
experimented with. The goal was to improve the Smart Sampling algorithm with
respect to another of its fundamental limitations, i.e. its inability to identify schedulers
beyond those present in the initial population, but also reduces its weakness relatively
to the local extremum phenomenon. Unfortunately, as shown in figures 9 and 10, the
results are not conclusive. In all cases, that strategy didn’t produce better results
than simply starting with a larger initial population. In some cases, that strategy even
made the algorithm’s performance worse, by introducing badly evaluated schedulers
with low scores right before the termination of the algorithm. We hypothesize that
this kind of strategy is still promising nevertheless, but at the condition that the new
schedulers are instead synthetized in a way that exploits the accumulated information
about the discarded schedulers in order to reintroduce schedulers which are different
and potentially have good scores, and not just random ones.

5 Conclusion

In this article we propose a new version of the Smart Sampling algorithm presented in
[10]. Our first experimental results with Plasma show that Smart Sampling can be used
to obtain schedulers that minimize/maximize a BLTL property. Aside from analyzing
more examples, there are several ways to extend this work. The first is to adapt the
algorithm to other systems and other requirements. One thinks, for example, of timed
stochastic systems [6] or of properties that involve cost calculations [23]. A limitation
of the current algorithm is that it does not exploit the knowledge between several
schedulers. This means that in the case where the scheduler is rare, the efficiency of the
algorithm will remain limited. One way to solve this problem would be to adapt genetic
algorithms. This requires modeling seed populations and extracting information from
them. Another work will consist in considering the hyperproperties which make it
possible to compare sets of executions and thus to model a broader spectrum of security
properties [1, 2]. Finally, using our approach to synthesize schedulers for stochastic
interface theories [7] should be investigated.
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