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Abstract. Formal verification utilizes a rigorous approach to ensure the
absence of critical errors and validate models against predefined prop-
erties. While significant progress has been made in verification methods
for various deep neural networks (DNNs), such as feed-forward neural
networks (FFNNs) and convolutional neural networks (CNNs), the ap-
plication of these techniques to semantic segmentation remains largely
unexplored. Semantic segmentation networks are vital in computer vi-
sion applications, where they assign semantic labels to individual pixels
within an image. Given their deployment in safety-critical domains, en-
suring the correctness of these networks becomes paramount. This paper
presents a comprehensive benchmark study on applying formal verifica-
tion techniques to semantic segmentation networks. We explore a diverse
set of state-of-the-art semantic segmentation datasets and generate neu-
ral network models, including fully-convolutional networks and encoder-
decoder architectures. Our investigation encompasses a wide range of ver-
ification properties, focusing on the robustness of these models against
bounded adversarial vulnerabilities. To evaluate the networks’ perfor-
mance, we employ set-based reachability algorithms to calculate the out-
put reachable set(s) and some state-of-the-art performance measures for
a comparative study among the networks. This benchmark paper aims to
provide the formal verification community with several semantic segmen-
tation networks and their robustness specifications for future use cases
in different neural network verification competitions.

Keywords: Semantic Segmentation · Adversarial Attack · Benchmark-
ing · Reachability · Robustness · VNN-Comp · .

1 Introduction

The Significant Role of Semantic Segmentation. Over the past three
decades, image segmentation [34] has been one of the most challenging prob-
lems in computer vision. In contrast to tasks like image classification or object
recognition, image segmentation operates differently, as it does not rely on prior
knowledge of visual concepts or objects within the image. Instead, it assigns
a specific category label to every individual pixel in the image. This approach
allows the model to accurately delineate distinct regions or objects present in
the image, effectively dividing it into meaningful segments. The model creates
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a comprehensive and detailed representation of the image’s content by associat-
ing each pixel with its corresponding category label. This capability to provide
pixel-level category information has significant real-world applications [36], such
as self-driving vehicles [23,45], pedestrian detection [5,12], defect detection [35],
therapy planning [15, 46], and computer-aided diagnosis [52, 53]. The segmen-
tation task empowers intelligent systems to grasp spatial positions and make
critical judgments by offering detailed semantic information at the pixel level,
setting it apart from other common computer vision tasks.

(a) The Original image (b) Semantically Segmented Image

Fig. 1: An example of semantic segmentation vision tasks from CamVid dataset
[7].

Deep Neural Networks (DNN) and Adversarial Attacks. Research has
shown that even well-trained neural networks (NNs) are vulnerable to minor
input modifications (i.e., adversarial attacks) that can cause significant changes
in the output [27]. Similar to image classification neural networks, semantic
segmentation networks (SSNs) are also known to be vulnerable to adversarial
perturbations [50]. While deep neural network (DNN) verification is evolving as
a well-established research area with numerous tools and techniques proposed
to ensure the safety and robustness specifications of DNNs [24, 48] and neu-
ral network-controlled systems [16, 18, 39, 43] most state-of-the-art verification
techniques for robustness validation in DNNs primarily focus on variations of
classification tasks, often related to images [1,4,8,11,21,26,30,32,37,38,49,51].
In recent years, verification of segmentation networks has also gained immense
focus from researchers all over [3, 19,42].

Neural Network Verification Competitions. The proliferation of neural
networks (NNs) in safety-critical applications has brought attention to their
susceptibility to adversarial examples [33], where even minor input perturba-
tions can significantly alter their outputs. Such perturbations, whether occur-
ring randomly or due to malicious intent, emphasize the crucial need to rigor-
ously analyze the robustness of deep learning systems before deploying them
in safety-critical domains. Consequently, numerous methods and software tools
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[10,13,17,20] have been developed for this purpose. However, the increasing num-
ber and specialization of these tools have made it challenging for practitioners
to choose the most suitable one for their needs.

In response to this dilemma, in 2020, a friendly International Competition
on Verification of Neural Networks (VNN-Comp 2020) [2,6,28] was conducted to
address the issue and allow researchers to compare their neural network verifiers
across a wide range of benchmarks. Originally designed as a friendly competition
with minimal standardization, the event evolved to introduce more standardiza-
tion and automation. The goal was to ensure a fair comparison among verifiers
on cost-equivalent hardware, utilizing standardized formats for properties and
networks. This evolution aimed to facilitate informed decision-making by re-
searchers and practitioners when selecting verification tools for their specific
requirements. The VNN-Comp celebrates its 4th iteration this year and suc-
cessfully presented the results at the Computer Aided Verification 2023 (CAV)
conference.

Work Presented In This Paper. Despite the growing interest and competi-
tion in robustness verification, there remains a lack of appropriate benchmarks
for evaluating different verifiers on semantic segmentation tasks. This research
addresses this gap by introducing segmentation networks on two widely used
datasets: MNIST [22], M2NIST (which is a multi-digit variant of MNIST suit-
able for segmentation evaluation) . Additionally, we define the specific properties
that need to be verified for these networks.

An essential aspect of our work is its potential utility for the VNN-Comp’s
upcoming iterations. By providing these well-defined benchmarks for semantic
segmentation, we hope to contribute to advancing and standardizing robustness
verification techniques in this domain.

Contributions. In summary, this paper makes several key contributions:

1. We introduce NNs designed specifically for two different semantic segmenta-
tion datasets, providing a comprehensive benchmark dataset for evaluating
their performance.

2. In this benchmark work, we not only showcase fully-convolutional NNs but
also include encoder-decoder architectures, offering a diverse set of models
to assess their effectiveness in different scenarios.

3. To assess the robustness of these networks against adversarial attacks, we
define specific properties and constraints and represent them in vnnlib files,
adhering to the guidelines set by VNN-Comp.

4. Furthermore, we present sample verification results, obtained using set-based
reachability algorithms and performance measures. These results demon-
strate the networks’ resilience and provide insights into their performance
under different conditions, aiding researchers and practitioners in making
informed decisions.

Outline. The paper is structured as follows: Section 2 introduces the benchmark
design considerations for this proposal, while Section 3 presents an example
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verification task for the MNIST networks against an adversarial attack. Finally,
Section 4 provides a summary of the main proposal, discusses its implications,
and outlines potential avenues for future research.

2 Benchmark Design

In the following, we describe our benchmark: (i) the overall motivations and
philosophy; (ii) the Datasets and their creation; (iii) the networks proposed; (iv)
the unknown-bounded adversarial attack; (v) the metrics used for evaluation;
and (vi) robustness property specification.

2.1 Philosophy

The motivation behind benchmarking formal verification techniques for seman-
tic segmentation networks arises from the growing significance of deploying these
networks in safety-critical applications. By establishing standardized benchmarks
and datasets, researchers and practitioners can assess the strengths and limita-
tions of various verification techniques. This enables them to make well-informed
decisions when selecting the most appropriate verification methods, considering
factors like accuracy, computational overhead, and scalability.

Benchmarking formal verification techniques drives innovation and encour-
ages the development of more reliable and secure deep learning models. It paves
the way for integrating formal methods into the training and deployment pipeline,
instilling greater confidence in the safety and robustness of semantic segmenta-
tion networks for critical applications.

2.2 Datasets

The MNIST and M2NIST datasets provide a solid starting point for conducting
image-segmentation benchmarking. In contrast to real-world images, especially
those captured from autonomous vehicles, these datasets feature well-isolated
digits positioned at the center of the images. Consequently, the task of segmen-
tation is comparatively straightforward. The digits, which are the focal points
of interest, exhibit distinct clarity and encounter minimal clutter or occlusion.
A significant advantage of the MNIST and M2NIST datasets lies in their pro-
vision of well-defined ground-truth annotations. This feature greatly simplifies
the accurate assessment of segmentation algorithms, enabling meticulous eval-
uation. Furthermore, these datasets often serve as valuable tools for conveying
and elucidating image segmentation’s core principles.

MNIST Dataset The MNIST [22] dataset is a well-known dataset used for
training and testing machine learning models, particularly for image classifi-
cation tasks. It consists of handwritten digit images, where each image is a
grayscale image of size 28x28 pixels and corresponding ground-truth-labeled
masks representing random digit numbers ranging from 0 to 9. To facilitate our
experiments, we divided the dataset into two sets: 50,000 images for training
and 10,000 images for testing. Fig. 2 displays sample images from the MNIST
dataset.
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Fig. 2: Sample images from MNIST dataset

M2NIST Dataset The M2NIST dataset comprises images with dimensions
of (64, 84, 1) and corresponding ground-truth-labeled masks depicting multiple
(up to three) random digits ranging from 0 to 9. These digits are arranged
in a manner that they do not overlap with each other within the images. For
our experiments, we divided the original dataset into two sets: 50,000 samples
for training and 10,000 for testing. Figure 3 displays sample images from the
M2NIST dataset.

Fig. 3: Sample images from M2NIST dataset

2.3 Neural Network Models

MNIST Dataset. For the MNIST dataset, we utilize two pre-trained networks
from [42], and we train a third network with 16 layers. The networks consist of an
image input layer with the input size of (28, 28, 1) followed by two-dimensional
convolution layers, ReLU layers and average-pooling layers.

inputconv1_1conv1_2conv1_3conv1_4relu1
BN1
conv2_1_1conv2_2_1conv2_3_1relu2_1BN2
conv2_1_2conv2_2_2conv2_3_2conv2_4relu2_2BN3
conv
softmaxlabels

inputconv1_1conv1_2relu1_2BN1
pool_1conv_1conv_2relu_1BN2
avgpool2dconv_3conv_4relu_2BN3
transposed-conv_1

transposed-conv_2

BN5
conv_5softmaxlabels

input
conv1_1conv1_2conv1_3conv1_4relu1
BN1
conv2_1conv2_2conv2_3conv2_4relu2
BN2
conv
softmaxlabels

(b) (c)(a)

Fig. 4: Benchmark for MNIST Networks

M2NIST Dataset. For the M2NIST Dataset, we propose the three pre-trained
networks used in [42] and two newly trained networks, as shown in Fig. 5. The
input image size for these networks is changed to (64, 84, 1).
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imageinputconv_1
conv_2
relu_1
avgpool2d_1conv_3
conv_4
relu_2
avgpool2d_2conv_5
conv_6
relu_3
avgpool2d_3conv_7
softmax
labels

input
conv1_1relu1_1conv1_2relu1_2pool_1conv_1relu_1conv_2relu_2avgpool2dconv_3relu_3conv_4relu_4transposed-conv_1

relu_5transposed-conv_2

relu_6conv_5softmaxlabels

inputconv1_1conv1_3relu1
BN1
conv2_1conv2_3relu2
BN2
conv3_1conv3_2relu3
BN3
conv4_1conv4_2relu4
BN4
conv5_1conv5_2relu5
BN5
conv
softmaxlabels

input
conv1_1relu1_1conv1_2relu1_2pool_1conv_1relu_1conv_2relu_2avgpool2dconv_3relu_3conv_4relu_4transposed-conv_1

relu_5transposed-conv_2

relu_6conv_5softmaxlabels

inputconv1_1conv_1relu1_1BN1
pool_1conv_2conv_3relu_1BN2
avgpool2dconv_4conv_5relu_2BN3
conv_6conv_7relu_3BN6
transposed-conv_1

transposed-conv_2

conv_8softmaxlabels

(e)(d)(c)(b)(a)

Fig. 5: Benchmark for M2NIST Networks
Table 1: Performances of different networks used for MNIST and M2NIST
datasets

NetworkMNIST Accuracyglobal(%) Accuracymean(%) IoUmean IoUweighted

mnist 21 iou83 96.88 93.70 0.8335 0.9427
mnist avg 21 97.28 96.20 0.8675 0.9490
mnist 16 96.93 92.67 0.8376 0.9430

NetworkM2NIST Accuracyglobal(%) Accuracymean(%) IoUmean IoUweighted

m2nist avg iou62 96.61 88.30 0.6210 0.9464
m2nist avg iou75 98.03 97.60 0.7502 0.9660
m2nist iou72 24 97.86 96.27 0.7271 0.9635
m2nist avg 22 97.97 98.30 0.7495 0.9650
m2nist avg 24 97.07 97.86 0.8321 0.9466

The performance measures of each of the proposed networks are shown in
Table. 1.

2.4 Segmentation in the Context of Proposed Datasets

The segmentation task in the MNIST and M2NIST datasets involves the process
of precisely delineating and identifying individual digits within the given images.
The goal is to assign a distinct label to each pixel or region that corresponds
to a specific digit. This segmentation is vital for isolating and distinguishing
the different digits present in the image, enabling accurate digit recognition and
analysis.

MNIST Dataset. In the MNIST dataset, each image depicts a single handwrit-
ten digit (0-9). The segmentation task involves precisely outlining the boundaries
of the digit, distinguishing it from the background. This process aims to identify
the exact spatial extent of the digit, ensuring that every pixel belonging to the
digit is correctly labeled while excluding pixels from the surrounding background.
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M2NIST Dataset. The M2NIST dataset introduces a slightly more complex
scenario. It consists of images containing two or three handwritten digits placed
in non-overlapping arrangements. The segmentation task in M2NIST entails ac-
curately segmenting each digit within the image, ensuring that the segmentation
boundaries do not cross over into neighboring digits. This task becomes espe-
cially challenging when digits are in close proximity, as segmentation algorithms
must correctly identify the boundaries between adjacent digits.

The segmentation task in both datasets essentially involves creating pixel-
wise masks that outline the boundaries of individual digits. These masks indicate
which pixels belong to each digit and which pixels constitute the background.
The successful execution of the segmentation task is crucial for subsequent digit
recognition, as the isolated digits can then be analyzed, classified, and identified
accurately.

2.5 Adversarial Attacks

Inspired by the paper [42], we consider an unknown-bounded adversarial attack
(UBAA) on input images in our study. The coefficient vector ϵ, representing the
attack strength, is bounded by lower and upper bounds, denoted as [ϵ, ϵ], with
each ϵi satisfying ϵi ≤ ϵi ≤ ϵi. We apply this attack concept to images, where
pixel values range from 0 to 255, and consider the attack’s impact on either a
single pixel or multiple pixels within the image. By applying this attack, a set of
images is generated, each having variations in pixel values within one or multiple
locations, limited by the bounds [ϵ, ϵ].

To illustrate this, we represent an adversarial image xadv as follows:

xadv = xorg +Σn
i=1ϵi · xattack

i (1)

where xorg and xadv are the original and adversarial images, respectively. The
variable n denotes the total number of pixels in the image, and ϵi represents the
attack coefficient for the pixel at position i.

Within this benchmark study, we subject each image, x, to an UBAA across
the test datasets. Here we darken a pixel x(i, j) by 1 unit if its value exceeds a
specified threshold, denoted as d. In mathematical terms, the adversarial dark-
ening attack on an image x can be described as follows:

xadv = x+ ϵ · xnoise, 1−∆ϵ ≤ ϵ ≤ 1,

xnoise(i, j) = −1, if x(i, j) > d, otherwise xnoise(i, j) = 0.

For ϵ = 1, we darken all pixels by 1 unit whose values exceed the threshold d
(set to 150 for this work and ϵ = 1), resulting in xadv(i, j) = x(i, j)− 1. The size
of the input set affected by the attack is determined by ∆ϵ. A larger value of ∆ϵ

corresponds to a larger input set after applying the attack.

By varying the values of ϵ and d, we generate different robustness properties
to verify.
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2.6 Evaluation Metrics

For evaluation purposes, we used the traditional concept of Intersection-over-
Union (IoU) for both segmentation model performances and model robustness
checking. Following [42], we also used the concept of robustness value (RV) and
robustness sensitivity (RS).

Robustness Value (RV). An SSN’s Robustness Value (RV) characterizes its
resilience against an adversarial attack. Specifically, for an unknown bounded
adversarial attack applied to an input image, the RV is defined as follows:

RV =
Nrobust

Npixels
× 100%, (2)

where Nrobust is the total number of robust pixels 1 under the attack, and
Npixels = h · w is the total number of input image pixels.

Robustness Sensitivity (RS). The Robustness Sensitivity (RS) quantifies
the network’s susceptibility under the adversarial attack, revealing the average
number of pixels in the segmentation output image that are influenced (either
becoming non-robust or unknown) when a single pixel in the input image is
attacked. The robustness sensitivity of an SSN corresponding to an unknown
bounded adversarial attack applied to an input image is defined as

RS =
Nnonrobust +Nunknown

Nattackedpixels
, (3)

where Nnonrobust is the total number of non-robust pixels under the attack,
Nunknown is the total number of pixels whose robustness is unknown (i.e., the
verifier can not guarantee on the robustness; it may or may not be robust), and
Nattackedpixels is the total number of attacked pixels of the input image.

Robust Intersection-over-Union (IoU). The robust IoU (RIoU ) concept
shares similarities with the traditional IoU, a fundamental metric used to eval-
uate accuracy during the training of semantic segmentation networks (SSNs).
The robust IoU of a semantic segmentation network (SSN) when subjected to
an unknown-bounded adversarial attack on an input image is calculated as the
average IoU of all labels that remain robust under the attack.

Consider a segmentation ground-truth image denoted as x and the verified
segmentation image under the adversarial attack as y. Then the IoU (IoUp) for
the pth label in the label images x and y is computed as the intersection of the
label images divided by their union for the ith label. , then the RIoU of the SSN
is computed by:

RIoU =
ΣL

p=1IoUp

L
. (4)

1 In this context, “Robust pixels” refer to those pixels that maintain their correct
classification even in the presence of an adversarial attack.
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In our context, we leverage the robust IoU concept in conjunction with the
robustness value and robustness sensitivity as core metrics to assess the robust-
ness of an SSN when subjected to adversarial attacks within the verification
framework. Instead of solely measuring accuracy, these metrics comprehensively
evaluate the network’s resilience against such attacks.

2.7 Robustness Property Specification

In semantic segmentation examples, while each pixel is assigned a class label,
individual pixels do not determine the object classification. Instead, a cluster of
pixels with the same class collectively contributes to the final object decision.
As a result, the robustness property defined for classification models is not di-
rectly applicable to segmentation models. Therefore, we focus on evaluating the
Intersection over Union (IoU) measures of the segmentation output image w.r.t
its original counterpart.

To characterize the robustness properties of a specific SSN for a given in-
put image, we define its corresponding Robustness Value (RV) and Robustness
Sensitivity (RS) within a specified range. This range represents the maximum
allowable deviation the SSN is allowed to exhibit to be within a safe region.
Consequently, for an adversarial input image set denoted as Xadv and its output
segmentation image set as Y adv, the robustness property for RV is defined as
follows:

RVmin ≤ RVorg ≤ RVmax (5)

where [RVmin, RVmax] is the permissible bounds for the RV and RVorg is the
actual RV for the unperturbed image.

Similarly, we can get the robustness property for the RS of the same example
as:

RSmin ≤ RSorg ≤ RSmax (6)

where [RSmin, RSmax] is the permissible bounds for the RS and RSorg is the
actual RS for the unperturbed image.

The IoU robustness property can be given by the equation:

RIoUmin
≤ RIoUorg

≤ RIoUmax
(7)

where [RIoUmin
, RIoUmax

] is the permissible bounds for the IoU and RIoUorg
is

the actual IoU for the unperturbed image.

2.8 Verification Property Specifications in vnnlib Files: Illustrated
with an Example

vnnlib file format. Following the competition protocol, we propose the ro-
bustness specification in a vnnlib file [9]. A vnnlib file is a standard format for
representing neural network verification problems. It provides details about the
neural network, input constraints, and properties to be verified. The vnnlib file
format is widely adopted in formal verification for neural networks [2,14,28,31].
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The verification specification in a vnnlib file involves defining properties using
a specific syntax. The structure of a vnnlib file typically includes the following
components:

1. Input Constraints: This section defines the input bounds or constraints
for the neural network.

2. Output Behavior Specification: This section contains the expected out-
put or behavior of the neural network for the specified input constraints.

3. Property Specification: This section specifies the neural network proper-
ties to be verified. These properties include safety and robustness verification
properties.

Example. To illustrate this format, we consider the example in Fig. 6.

Fig. 6: The robustness verification specification for a Semantic Segmentation
Network (SSN) is illustrated as follows: (a) Example image and its correspond-
ing pixel classification. (b) Location of the adversarial attack (red), the pixel
darkened by 1 (original value 254), and the resulting pixel classification after
the adversarial attack.

In this example, we focus on an input image represented as a 4 × 4 2-
dimensional array with pixel values from 0 to 255. The output of the Seman-
tic Segmentation Network (SSN) pixel classification layer is also a 4 × 4 2-
dimensional array, assigning classes to each pixel. For this image, we highlight
the digit ‘1’, with the first three rows in column 3 of the output classified as ‘1’
and the remaining rows labeled as background (represented by ‘10’).

Next, we explore an Unbounded Adversarial Attack (UBAA) on the image,
targeting pixels with a value of 254, reducing them to 253. To ensure a bounded
attack, we set the upper bound of the attacked image as the original image itself
[Fig. 6 (b) left], and the lower bound as the image with darkened pixels [Fig. 6
(b) middle].
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To specify the input properties in a vnnlib file, we first flatten the input
image column-wise and then define the upper and lower bounds for each pixel
representing the attack. In the case of the provided image example, the input
properties in a vnnlib file should be structured as depicted in List. 1. This allows
for a comprehensive representation of the image and its bounds, facilitating the
verification process.

List 1 Input Constraints

; V erification Property Specification
(declare− const X 0 Real)
(declare− const X 1 Real)
(declare− const X 2 Real)
(declare− const X 3 Real)
(declare− const X 4 Real)
(declare− const X 5 Real)
(declare− const X 6 Real)
(declare− const X 7 Real)
(declare− const X 8 Real)
(declare− const X 9 Real)
(declare− const X 10 Real)
(declare− const X 11 Real)
(declare− const X 12 Real)
(declare− const X 13 Real)
(declare− const X 14 Real)
(declare− const X 15 Real)
; Unscaled Input 0 : (255, 255)
(assert (<= X 0 255))
(assert (>= X 0 255))

; Unscaled Input 1 : (255, 255)
(assert (<= X 1 255))
(assert (>= X 1 255))

; Unscaled Input 2 : (252, 252)
(assert (<= X 2 252))
(assert (>= X 2 252))

; Unscaled Input 3 : (251, 251)
(assert (<= X 3 251))
(assert (>= X 3 251))

; Unscaled Input 4 : (253, 254)
(assert (<= X 4 254))
(assert (>= X 4 253))

; Unscaled Input 5 : (251, 251)
(assert (<= X 5 251))
(assert (>= X 5 251))

; Unscaled Input 6 : (252, 252)
(assert (<= X 6 252))
(assert (>= X 6 252))

; Unscaled Input 7 : (251, 251)
(assert (<= X 7 251))
(assert (>= X 7 251))

; Unscaled Input 8 : (2, 2)
(assert (<= X 8 2))
(assert (>= X 8 2))

; Unscaled Input 9 : (0, 0)
(assert (<= X 9 0))
(assert (>= X 9 0))

; Unscaled Input 10 : (1, 1)
(assert (<= X 10 1))
(assert (>= X 10 1))

; Unscaled Input 11 : (250, 250)
(assert (<= X 11 250))
(assert (>= X 11 250))

; Unscaled Input 12 : (255, 255)
(assert (<= X 12 255))
(assert (>= X 12 255))

; Unscaled Input 13 : (253, 254)
(assert (<= X 13 254))
(assert (>= X 13 253))

; Unscaled Input 14 : (253, 253)
(assert (<= X 14 253))
(assert (>= X 14 253))

; Unscaled Input 15 : (255, 255)
(assert (<= X 15 255))
(assert (>= X 15 255))
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Similar to the input specification, for generating the output specification, we
also need to flatten the output column-wise as in List. 2.

List 2 Output Behavior Specification

(declare− const Y 0 Real)
(declare− const Y 1 Real)
(declare− const Y 2 Real)
(declare− const Y 3 Real)
(declare− const Y 4 Real)
(declare− const Y 5 Real)
(declare− const Y 6 Real)
(declare− const Y 7 Real)
(declare− const Y 8 Real)
(declare− const Y 9 Real)
(declare− const Y 10 Real)
(declare− const Y 11 Real)
(declare− const Y 12 Real)
(declare− const Y 13 Real)
(declare− const Y 14 Real)
(declare− const Y 15 Real)

; pixel classification constraints
(assert(== Y 0 10))
(assert(== Y 1 10))
(assert(== Y 2 10))
(assert(== Y 3 10))
(assert(== Y 4 10))
(assert(== Y 5 10))
(assert(== Y 6 10))
(assert(== Y 7 10))
(assert(== Y 8 1))
(assert(== Y 9 1))
(assert(== Y 10 1))
(assert(== Y 11 10))
(assert(== Y 12 10))
(assert(== Y 13 10))
(assert(== Y 14 10))
(assert(== Y 15 10))

In the example, we also make an assumption, as depicted in [Fig. 6 (b) right]
that the SSN misclassifies two pixels due to the darkening effect, classifying
them as ‘7’ instead of ‘10’. Consequently, following the definition of robustness
measures, we obtain the values for both the unperturbed image and the one
corresponding to the UBAA attack as shown below in Table. 2. Here we need
to emphasize that following Sec. 2.6 the concept of robustness sensitivity is only
valid for an adversarial input.

Table 2

RobustnessMeasures Unperturbed Under UBAA

RV 1 0.8750
RS - 1

RIOU 1 0.6154

Drawing on the concept of robustness measures for SSN verification against
adversarial attacks, we introduce additional output verification properties. These
properties are derived from the output pixel classification constraints, as pro-
vided in List. 3. For the example shown in Fig. 6 we restrict the considerable RV
in [0.9, 1], RIoU in [0.8, 1] and RS to be always ≤ 100, for the output reachable
set to be in the safe region. The proposed properties are as follows:
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List 3 Verification Property Specification: Robustness Measures

; robustness measures specification
(assert(<= RV 1))
(assert(>= RV 0.9))
(assert(<= RS 0.8))

(assert(<= RIOU 1))
(assert(>= RIOU 0.8))

3 Evaluation

3.1 Reachability Analysis

To assess the impact of the adversarial attack on each dataset, we employ reach-
ability analysis, a widely used concept [16,25,29,40–42,47]. The perturbed input
is represented as a bounded set, and we compute the output reachable set layer-
by-layer for the SSN. For the final layer of an SSN, i.e., pixel-classification layer,
the pixel-class reachable set at a specific pixel is denoted as pc(i, j) = {l1, ..., lm}.
This set is obtained by determining all cross-channel max-point candidates for
each pixel in the input set. Consequently, we can obtain the pixel-class reachable
set of the layer, which is equivalent to the reachable set of the SSN, denoted as
Rf = [pc(i, j)]h×w, i.e., the collection of pixel classes at every index (i; j) [42].

Subsequently, we calculate the Robustness Values (RVs), Robustness Sensi-
tivities (RSs), and Robust Intersection-over-Union (IoU) scores for all the images
in the adversarial set based on the output reachable set.

We employ the “approx-star” method for reachability analysis in this paper.
This method is preferred due to its computational efficiency, requiring less time
and memory than “exact-star” methods. We direct our readers to refer to [40–42]
for a more comprehensive understanding of the Star-based reachability analysis.

3.2 Neural Network Verification (NNV) Tool

For calculating the output reachable set using “approx-star,” we make use of
a readily available tool called “Neural Network Verification (NNV) Tool” [44].
It is a comprehensive set-based framework for verifying neural networks (NNs).
It supports multiple reachability algorithms, enabling safety verification and
robustness analysis of various deep neural network (DNN) types.

In the context of reachability analysis, the NNV tool computes output reach-
able sets layer-by-layer, starting from a given input. This input is defined by up-
per and lower bounds, representing perturbations around the actual input. As
the analysis progresses through the layers, the reachable sets at the final layer
represent the collection of all possible states of the DNN.

The primary objective of the NNV tool is to determine whether the DNN is
deemed “safe.” A DNN is considered safe when the specified safety properties
determine no intersection between the output sets and the predefined unsafe
region. By verifying safety conditions and analyzing robustness, the NNV tool
aids in ensuring the reliability and trustworthiness of neural networks in various
applications.
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3.3 Results

In this section, we present a sample plot [Fig. 7] illustrating the average ro-
bustness measures of three MNIST networks, as described in Section 2.3. We
conduct the analysis by subjecting 100 random digit images to the UBA attack
and calculating the networks’ average robustness against this attack with the
following details: (1) max number of pixels attacked under UBAA: [1 2 3 4 5]
and (2) ϵ = 1 [Sec. 2.5].

When analyzing the outcomes of our experiment, we made several notable
observations that shed light on the behavior of different robustness measures
under varying degrees of adversarial attacks. These observations provide valuable
insights into how these measures respond and behave in the face of adversarial
perturbations.
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Fig. 7: The average robustness value, sensitivity, and IoU of MNIST SSNs.

Specifically, as we increased the number of adversarial attacks, we noticed
a consistent downward trend in both the robustness value and the robust IoU
(Intersection-over-Union). The robustness value quantifies the extent to which
the SSN’s predictions remain accurate after exposure to adversarial perturba-
tions. In our analysis, this value consistently decreased with a greater number
of attacks. Similarly, the robust IoU, which measures the overlap between pre-
dicted and ground-truth segments, also demonstrated a decreasing pattern with
increased attacks. This reduction suggests that the adversarial perturbations ad-
versely affect the network’s ability to segment objects within images accurately.

Interestingly, we encountered a nuanced behavior when examining the ro-
bustness sensitivity. Unlike the robustness value and robust IoU, the trend in
robustness sensitivity was not strictly uniform as the number of attacks increase.
Robustness sensitivity gauges how sensitive the SSN’s output segmentation is
to changes in input pixels due to an attack. Our observations found that this
sensitivity did not consistently follow a rigid trend with escalating adversarial
attacks. This variability aligns with the inherent nature of robustness sensitiv-
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ity, which can be influenced by the distribution and complexity of perturbations
introduced by different attacks.

Overall, these observations reaffirm the theoretical definitions and expec-
tations of these robustness measures in the context of various adversarial at-
tacks. The decreasing trends in robustness value and robust IoU highlight the
vulnerability of the SSN’s segmentation performance to increasing adversarial
perturbations. The non-uniform trend in robustness sensitivity emphasizes the
intricate interplay between attack characteristics and the network’s responsive-
ness to perturbations, leading to varying degrees of sensitivity under different
attack scenarios. Such insights are crucial for understanding the strengths and
limitations of these robustness measures and guiding the development of more
resilient semantic segmentation networks in the future.

4 Conclusion and Future Ideas

In this paper, we proposed a benchmark framework for the formal verification of
semantic segmentation neural networks. Our study aimed to address the chal-
lenges in ensuring the safety and reliability of these networks, which are increas-
ingly being utilized in critical applications such as autonomous vehicles, medical
imaging, and surveillance systems. By establishing a standardized benchmark,
we aimed to facilitate the first step towards a fair comparison of different veri-
fication methods and tools, promoting advancements in the field of formal veri-
fication for semantic segmentation neural networks. The benchmark framework
we presented encompasses a diverse set of neural network architectures, datasets,
and verification properties, representing two commonly used datasets: MNIST
and M2NIST. We also provided a detailed specification format in vnnlib files to
describe the verification properties, enabling the seamless integration of different
tools and approaches. This standardization allows researchers and developers to
easily evaluate and compare the effectiveness of their verification techniques.

While our proposed benchmark framework represents a significant step to-
wards formal verification in semantic segmentation neural networks, there are
several avenues for future research and enhancement. Firstly, we plan to contin-
uously update and expand the benchmark by incorporating new neural network
architectures, datasets, and verification properties that emerge in the field. This
will ensure that the benchmark remains up-to-date and reflective of the latest
advancements in semantic segmentation tasks. Moreover, we aim to collaborate
with the research community to gather feedback and incorporate suggestions for
improving the benchmark. This will allow us to refine the benchmark based on
the practical experiences and insights of researchers working on formal verifi-
cation for semantic segmentation networks. Furthermore, we intend to conduct
comprehensive evaluations and comparisons of existing formal verification meth-
ods and tools using the benchmark. By doing so, we can identify the strengths
and limitations of different approaches, helping to guide researchers in selecting
the most suitable verification techniques for their specific use cases. Lastly, we
will explore the integration of novel techniques and advances in formal verifi-
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cation to enhance the benchmark’s capabilities and coverage. This may include
leveraging machine learning-based methods, formal synthesis, and abstraction
techniques to address the challenges posed by the complexity and scalability of
large-scale semantic segmentation networks.

In conclusion, our proposed benchmark framework for the formal verification
of semantic segmentation neural networks lays the foundation for advancing the
safety and reliability of these networks in critical applications. We look forward
to collaborating with the research community to further refine and expand the
benchmark, fostering progress in the field of formal verification for semantic
segmentation neural networks.
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