
Benchmarks: Semantic Segmentation Neural
Network Verification and Objection Detection

Neural Network Verification in Perceptions Tasks
of Autonomous Driving

Yonggang Luo1, Jinyan Ma1, Sanchu Han1, and Lecheng Xie1

AI LAB, Chongqing Changan Automobile Ltd., Chongqing, China
{luoyg3, majy1, frankhan, xielc}@changan.com.cn

Abstract. The verification of the security of neural networks is crui-
cial, especially for the field of autonomous driving. Although there are
currently benchmarks for the verification of the robustness of neural
networks, there are hardly any benchmarks related to the field of au-
tonomous driving, especially those related to object detection and se-
mantic segmentation. Thus, a notable gap exists in formally verifying the
robustness of semantic semantic segmentation and object detection tasks
under complex, real-world conditions. To address this, we present an in-
novative approach to benchamark formal verification for autonomous
driving perception tasks. Firstly, we propose robust verification bench-
marks for semantic segmentation and object detection, supplementing
existing methods. Secondly, and more significantly, we introduce a novel
patch-level disturbance approach for object detection, providing a more
realistic representation of real-world scenarios. By augmenting the cur-
rent verification benchmarks with our novel proposals, our work con-
tributes towards developing a more comprehensive, practical, and re-
alistic benchmarking methodology for perception tasks in autonomous
driving, thereby propelling the field towards improved safety and relia-
bility. Our dataset and code used in this work are publicly available 1

2.

Keywords: Machine Learning · Formal Verification · Perception Tasks
· Autonomous Driving.

1 Introduction

The advent of autonomous driving technologies has ushered in a new paradigm
for transportation, offering promise for improved safety and efficiency. Yet, they
also pose significant challenges, particularly in perception tasks which are fun-
damental to their safe operation. For example, by accurately segmenting the
drivable road surface from other areas, the vehicle can know where it can go.
1 https://github.com/pomodoromjy/vnn-comp-2022-Carvana-unet
2 https://github.com/pomodoromjy/vnncomp-2023-CCTSDB-YOLO
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In the other case, the autonomous vehicle needs to detect pedestrians to ensure
that it stops or slows down in time to avoid collisions. Reliable perception ne-
cessitates precise object detection and semantic segmentation under varied and
often unpredictable real-world conditions [37], where semantic segmentation is
the task of clustering parts of images together which belong to the same object
class [40] and object detection is the task of identifying objects in the image
along with their localizations and classifications [10].

Formal verification, grounded in rigorous mathematical and logical princi-
ples, has been identified as a potent mechanism for assuring the safety and
performance of neural network. Many formal approaches are already able to
verify variants of classification tasks [1], [5], [12], [15], [24], [30], [35], [38], [41],
[43], [49], [46], [36], [47], [45], [51], [50], [16], [19], [20], [21], [26], [2], [7]. The
verification of safety and robustness specification of neural network controlled
systems is explored by many works [22], [23], [42]. Furthermore, the performance
of image-based controllers is discussed by concatenating the generator network
with the control network [25]. However, only few work focuses on the formal
approach for verifying semantic segmentation and object detection networks ro-
bustness using reachability analysis [44]. Moreover, existing formal verification
methods often rely on assumptions of ideal operational environments, creating
a potential divergance from the often unpredictable conditions encountered in
real-world scenarios.

Given this context, although we have many benchmarks for formal verifi-
cation methods [3], [31], [8], there is still a significant and unexplored need to
benchmark formal verification methods for autonomous driving system in the
wild. This approach allows for a more realistic assessment of perception neural
networks’ robustness under challenging real-world conditions, while also facili-
tating calibration of verification tools to better mirror reality. The motivation
behind our work arises from the necessity to enhance the verification benchmarks
for object detection and semantic segmentation tasks and to better align them
with actual autonomous driving scenarios.

In this paper,we present a comprehensive approach to benchmark formal ver-
ification for autonomous driving perception tasks. Our primary contributions are
two-fold: firstly, we propose robust verification benchmarks for object detection
and semantic segmentation tasks. Secondly, and more importantly, we introduce
a patch-level disturbance approach for object detection tasks, mirroring the com-
plexities of real-world scenarios in a more realistic manner. Although adversarial
samples can effectively attack our perception models, in the real world, we seldom
encounter disturbance patterns that exactly match adversarial samples. That is,
it’s nearly impossible to replicate pixel-level disturbances in the real world, so
it’s questionable whether we will encounter adversarial samples’ interference pat-
terns in the real world. On the contrary, patch-level disturbance patterns are a
more common type of interference, and they are easier to replicate in the real
world and are more likely to occur. For example, we only need to simply cut
some black paper pieces to replicate the disturbance patterns we want to ap-
pear in the real world. By augmenting the existing verification benchmarks and
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proposing a novel patch-level disturbance approach, this work aims to provide a
more comprehensive and practical benchmarking methodology for autonomous
driving perception tasks, thereby advancing the field towards greater safety and
reliability.

The paper is organized as follows: In Section 2, we provide a detailed relevent
work. Section 3 introduces our semantic segmentation benchmark. In Section 4,
we delve into our patch-level object detection benchmark. Finally, Section 5
presents the experiment of two benchmarks, and Section 6 concludes the paper
with future work directions.

2 Related Work

Perception tasks in autonomous driving: Perception tasks hold a key role
by playing a critical function in recognizing and understanding the various el-
ements in the surrounding environments [48]. This understanding allows these
perception tasks to extract vital semantic information necessary for safe and
efficient driving. Such information includes the identification and detection of
different road onjects. These could be pedestriants crossing the street, other
vehicles in transit, or even potential obstacles that could hinder the smooth
progress of the autonomous vehicle.

Moreover, object tracking is another crucial perception task, ensuring a con-
tinous understanding of the movement and position of surrounding entites. An-
other aspect of perception tasks involves semantic segmentation, a process that
categorizes each pixel in an image to a particular class to help the vehicle better
understand its environment. This not only includes road and off-road classifi-
cation but also recognizes different lanes and traffic lights, aiding the vehicle’s
decision-making progress in different traffic scenarios.

These perception tasks rely heavily on the integration of multiple sensor
inputs. These sensors typically include cameras, Light Detection and Ranging
(LiDAR) systems and Radio Detection and Ranging (RADAR) sensors.The con-
fluence of data from these diverse sensor systems feeds into the perception tasks,
aiding the autonomous vehicle in understanding and navigating its surroundings
efficiently and safely.

In this paper, we mainly focus on semantic segmentation and object detection
tasks. Considering that the research in formal verification of neural networks is
still unable to handle complex neural network models, we have simplified the
model in our benchmarks, which is not intended for commercial mass production
or practical use. At the same time, we are only considering the data of a single
target in a single camera as the models’ input. We will treat more complex
perception models and multi-sensor inputs as future research directions.

Benchmarks: Well-known benchmarks for perception tasks are typically
KITTI [17], nuScenes [9] and Waymo [39] in autonomous driving area, however
they were designed for general purpose instead of performing robustness eval-
uation. In order to conduct evaluations of robustness, recent studies have been
actively either developing new benchmarks based on the existing autonomous
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driving datasets [14], or constructing new datasets that consist of road anoma-
lies, or those that represent extrem weather conditions [11], [18], [27], [32], [4],
[13], [33].

In the field of robustness verification of neural networks, benchmarks are typ-
ically image classification tasks, though some recent studies have been actively
proposing new benchmarks in many other tasks [3], [31], [8]. However, to the
best of our knowledge, so far there is no paper focusing on benchmarks which
evaluate formal verification tools for perception tasks of autonomous driving in
the wild.

In this paper, we propose two benchmarks which are related to autonomous
driving scenarios, and we present a detailed description of the background to
highlight our benchmarks’ relevance and the characteristics of the verification
problems. The ONNX format and the VNN-LIB format were adpoted for our
benchmarks.

3 Semantic Segmentation Benchmark – Carvana Unet

The motivation behind our proposed benchmarks is primarily the predominant
focus of existing networks in the literature on image classification. We perceive
the need for more emphasis on aspects such as object detection or semantic
segmentation, particularly in real-world scenarios such as autonomous driving.
In this section, we introduce a new suite of simplified Unet [34] benchmarks
designed specifically for neural network verification on the Carvana dataset [6].
To respond to the practicality of current verification tools and the intricate
nature of semantic segmentation, we construct this new series of simplified Unet
benchmarks (model one consists of four Conv2d layers followed by BatchNorm
(BN) and ReLu; model two builds upon model one, adding an AveragePool layer
and a Transposed Conv Upsampling layer). We believe that it’s vital for tools
to address more pragmatic architectures and consider this simplified Unet as a
step in that direction.

Furthermore, the Carvana dataset, composed of 5088 images representing 318
cars (16 images per car), has been divided into a test set of 318 images (one per
car) and a training set of the remaining 4700 images. The input images should
be normalized to a [0, 1] range. Ground truth masks, generated by running the
model on original images, assign either a 0 or 1 to each pixel. Our proposal is
to select 16 images randomly for verification from those whose over 98.8 percent
and 99.0 percent of pixels are predicted correctly by model one and model two
respectively. The input size is [1, 4, 31, 47], where ’1’ corresponds to the batch
size, ’4’ to the number of channels, ’31’ and ’47’ to the height and width of
samples respectively. The first three channels signify RGB values of images,
and the last channel denotes the model-produced mask used for computing the
quantity of accurately predicted pixels by the model. The model output is the
count of pixels predicted correctly by the model, juxtaposed with the model-
produced mask. We summarized the network details and implementation details
in Appendix A and Appendix B.
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4 Patch-level Object Detection Benchmark – CCTSDB
YOLO

While the Carvana Unet benchmark in section 3 allows the application of neu-
ral network verification tools in autonomous driving scenarios, the pixel-level
perturbation is still challenging to reflect the real-world situation. In this sec-
tion, we are stepping up the challenge by introducing a new set of benchmarks
for object detection within autonomous driving scenes. Given the practicality of
current verification tools, we have modified Yolo-FastestV2 [29], based on a well-
known end-to-end object detection framework Yolo. This architecture comprise
backbone, neck, and head components.

To further alleviate computational burden, we have simplified the backbone
and neck. For the head, we aim to facilitate single object detection while bypass-
ing the need to conduct non-maximum suppression (NMS) operation within the
model. To this end, we have replaced the box regression method with landmark
regression for coordinate detection.

To the best of our knowledge, previous benchmarks were designed to test
the model’s digital world robustness. However, with an eye towards real-world
practicality, we now suggest testing the model’s robustness within the physical
world. Specifically, we will supply an image with its corresponding label, as well
as a fixed-size patch (either 1×1 or 3×3). Our goal is for the community to
verify the model’s robustness after applying the patch to any position within
the image, all within the allocated time of specific time.

We utilized the training set from CCTSDB 2021 [52], which encompasses a
total of 16356 images (26838 instances). Further division of all instances in a 9:1
ratio resulted in a training set comprising 23856 instances and a test set featur-
ing 2982 instances. The input images and target coordinates need normalization
within the range of 0 - 1. Targets are divided into three categories, signified by 0
(mandatory), 1 (prohibitory), and 2 (warning). We picked images with an inter-
section over union (IoU) greater than 0.5 and correct category classification from
the test set. Eventually, 16 images will be selected at random for verification.

The model input consists of an array of 12296 elements, which include images
(12288 elements), position (2 elements), and targets (6 elements). The model’s
single output is a combination of IoU between the predicted and actual bounding
box, and the consistency of the predicted category with the actual category, as
the Equation 1.

output = IoU ×
{
1, pred_cls = gt_cls
0, pred_cls 6= gt_cls (1)

If the final output for the input with the added patch is less than 0.5, the
model is deemed non-robust for that patch. And vice versa. We summarized the
network details and implementation details in Appendix A and Appendix B.
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5 Experiments

For the Carvana Unet benchmark, three formal verification tools (α, β Crown
[49], [46], [36], [47], [45], [51], [50], MN-BAB [16], and VeriNet [19], [20], [21])
have been successfully applied to our benchmark in VNN-COMP 2022 [31]. The
number of instances that were solved by the different formal verification tools
within a certain runtime for our benchmark is as illustrated in the Figure 1.
We expect more formal verification tools could be applied to the Carvana Unet
benchmark in the future.
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Fig. 1. The number of instances that were solved by the different formal verification
tools within a certain runtime for Carvana Unet in VNN-COMP 2022 [31].

For the CCTSDB YOLO benchmark, we further conduct extensive experi-
ments to prove the following properties; (1) The simplified object detection model
can still accurately identify targets within the dataset. (2) By adding patches
randomly, we can ensure an anomalous detection in some images while main-
taining correct detection in others, thus preventing situations where all data are
either hold or violated. The object detection model and the dataset are same as
the description in section 4. We summarize our experiment results in the Table
1.

As illustrated in the Table 1, the result shows that without the patch added,
the model achieves successful detection rates of 0.968 and 0.978, indicating that
its performance on our dataset has not significantly declined due to simplifica-
tion. Moreover, after adding the patch, the detection rates drop to 0.805 and
0.253, ensuring that some data fails detection, thereby validating the effective-
ness of our benchmark in evaluating the performance of formal verification tools
(within a certain time limitation).
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Table 1. Object detection accuracy for the dataset with/without patches.

Model without patch with patch

Model1 (patch size 1×1) 0.968 0.805
Model2 (patch size 3×3) 0.978 0.253

At the same time, we also show different types of detection errors in our
benchmarks in Figure 2. Except for the image in the upper left corner of the
figure, the rest of the error are related to the incorrect positioning of the bounding
box, even if the object classification within the bounding box is correct. But for
the image in the upper left corner, the error lies in both the incorrect position
of the bounding box and the incorrect classification of the object within the
bounding box. We can further set the conditions for "hold" and "violated" based
on the scenarios we use. For example, when we only care about the information
of the traffic sign, and are less concerned about its position, we can rewrite
Equation 1, relying solely on whether the predicted and actual categories are
consistent to determine its robustness.

6 Conclusion

In this paper, we show how perception tasks’ performance can be further con-
nected with robustness verification field by benchmarking formal verification for
autonomous driving in the wild. Specifically, we propose two benchmarks con-
sist of the pixel-level semantic segmentation benchmark (Carvana Unet) and the
patch-level object detection benchmark (CCTSDB YOLO). Experiments results
demonstrate the effectiveness of the proposed benchmark for evaluating formal
verification tools in autonomous driving perception tasks. Future work will take
into account more real-world autonomous driving tasks (e.g., 3D object detec-
tion, object tracking and LiDAR localization) and more variants of attached
patches.
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A Network Details

In our benchmarks, we used a total of three networks, namely Unet_simp,
Unet_upsample, and Yolo. Among them, Unet_simp and Unet_upsample cor-
respond to benchmark Carvana Unet, while Yolo corresponds to benchmark
CCTSDB YOLO. We have summarized the amount of parameters and the size
of the models corresponding to these thress networks in the Table 2. The net-
works in benchmark Carvana Unet used operation such as Conv, BN, ReLu,
AvgPool, ConvTranspose, etc., whereas the networks in benchmark CCTSDB
YOLO used operations like Conv, BN, ReLu, MaxPool, interpolate, etc.

Table 2. Summary of the amount of parameters and model sizes of the three networks

Networks The amount of parameters Model sizes (M) The number of layers

Unet_simp 149826 0.608 4
Unet_upsample 330370 1.333 6
Yolo 144583 0.668 Not defined due to existed branches

B Implementation Details

For the benchmark Carvana Unet, we used the RMSprop optimizer, where the
weight decay was set to 1×10−8 and the momentum was set to 0.9. We initialized
the learning rate to 1 × 10−5, with a decay strategy of ReduceLROnPlateau,
where the mode was chosen as max and patience was set to 2. We trained it for
a total of 5 epochs.

For the benchmark CCTSDB YOLO, we used the SGD optimizer, where
the weight decay was set to 0.0005 and the momentum was set to 0.949. We
initialized the learning rate to 0.001, with a decay strategy of MultiStepLR,
where the milestones was set to an array as [150, 250] and gamma was set to
0.1. We trained it for a total of 300 epochs.


