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Abstract. Deep Learning success in a wide range of applications, such
as image recognition and natural language processing, has led to the
increasing usage of this technology in many domains, including safety-
critical applications such as autonomous cars and medicine. The usage of
the models, e.g., neural networks, in safety critical applications demands
a thorough evaluation from a component and system level perspective. In
these domains, formal methods have the ability to guarantee the correct
operation of these components. Despite great efforts in the formal verifica-
tion of neural networks in the past decade, several challenges remain. One
of these challenges is the development of neural networks for easier verifi-
cation. In this work, we present an empirical analysis, presented as a Latin
Hypercube experiment design, in which we evaluate how regularization
and initialization methods across different random seeds on two datasets
affect the verification analysis of a reachability analysis technique for the
verification of neural networks. We show that there are certain training
routines that simplify the formal verification task. Lastly, a discussion
on how these training approaches impact the robustness verification and
reachability computation of the method utilized is included.

Keywords: Formal Verification, Medical Imaging, Deep Learning, Reach-
ability Analysis

1 Introduction

Neural Networks (NN) are a type of machine learning models that are able
to learn complex patterns from data, and have been used to achieve state-of-
the-art results in a wide variety of tasks such as image recognition [23,6,14]
and natural language processing [7,32,29]. However, their usage in safety-critical
domains requires an extensive and rigorous analysis of these models from both a
component and system level perspective. Formal methods are techniques that
are able to provide guarantees on the functionality of these models to ensure
the correct behavior in these domains. In the past several years, there have
been numerous formal verification methods and tools developed to address this
challenge [41,2,31,28,22,49,27,30,35,48]. Despite recent efforts, several challenges
in existing state-of-the-art methods and tools remain due to the complexity of
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these models and constant and rapid development of new NN architectures and
models. One of the main challenges is the scalability of verification methods to
large models, such as those use in Semantic Segmentation [31,45] or LLMs [32].
Another challenge is the disconnect between NN development and verification.
Typically, first goes the development and training of the neural network, followed
by the verification approach on the learned network (fixed parameters). If the
networks do not meet the formal requirements or the methods are not able to
prove them due to the complexity of the models, either new methods are needed
to be developed or a new model is needed to be trained.

In this manuscript, we focus on the latter challenge, with the goal of providing
some guidance and understanding on how training procedures affect formal
verification methods. This idea of this project began when we discovered a large
difference in the reachability computation times (order of 10 to 100 times faster)
when analyzing the robustness of a neural network classifier on a medical image
dataset. These findings were present not only in individual instances of a class,
but were general to the whole set of images analyzed from the same class. After
these observations, we decided to dig a little deeper to understand the reason
behind these differences. Is it specific to the images evaluated? Is it just for a
specific model? What if we change the training method, will a similar verification
patter hold for the new method as well?

In this manuscript, we present a set of experiments that provide some insights
to these questions using the verification tool NNV [46,30]. The contributions of
this work are:

– Introduction of a new benchmark for neural network verification in the area
of medical imaging (MedNIST [1]).

– Compute the formal verification of two benchmarks, both trained on gray-
scale image datasets, consisting of a total of 45 models and 300 instances
analyzed per benchmark.

– Analysis of NNV [41,30] methods on these two benchmarks, including a
discussion of the training effects on the reachability method used.

2 Related Work

Neural network verification. The area of neural network verification has grown
immensely in recent years, having the community establish and develop standard
input formats1. These have been especially useful for friendly competitions [28,31]
as well as for method and tool comparison that enable a faster and (hopefully)
fairer comparison across tools [49,48,21,22,2,30,46,31]. Despite recent efforts, the
majority of these methods focus on verifying feedforward and convolutional
NN architectures. These approaches can generally be classified into sound or
unsound, and complete or incomplete. Unsound approaches are less common for
NN verification than sound approaches, as they cannot provide formal guarantees
on the computer results. They usually refer to probabilistic analysis such as [42]

1 vnnlib: https://www.vnnlib.org

https://www.vnnlib.org
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or under approximations of the actual verification result, which are typically
faster to compute than sound approximations [17]. Complete and sound methods
refer to algorithms that can precisely analyze whether a given property holds on
a model, also referred to as exact methods. A disadvantage from these methods is
how computationally expensive these are, often becoming prohibitive to compute,
thus suffering from scalability issues for large models or inputs sets [45,31]. These
methods are often limited in the type of layers and architectures they can be used
for. These can be Satisfiability Modulo Theories (SMT) based methods [22,21],
Mixed Integer Linear Program (MILP) based methods [40], reachability analysis
methods [45], and others such as branch and bound methods [4]. To overcome
some of these challenges, sound and incomplete methods have been developed.
These methods often introduced a tradeoff between precision, scalability and
computational power needed. These methods are capable of computing the
verification results faster than sound and complete methods, however, due to the
overapproximation computations, unknown results may arise (cannot guarantee
specification is violated nor satisfied). Several of these methods are based on
abstract interpretation, some of which have demonstrated to outperform complete
methods by orders of magnitude (time wise) [31]. Recent work in [11] has enhanced
the abstraction-based verification of neural networks via residual reasoning.

Training & Verification & Repair. There have also been some works focusing on
repairing or retraining neural networks when a specification is violated [8,39,13].
Many of these efforts focus on fine-tuning or retraining the network when inputs
violating the output constraints are found [51,10,33,36], directly modifying the
parameters of the network to correct violating inputs [9,16,47], or on modifying
the architecture of the neural network to facilitate the repair of the model such as
in [37]. Another area that has seen some efforts is to directly train neural networks
for enhancing the verification approaches. Some works focus on replacing the
ReLU layers by Parametric ReLUs to enhance both robustness and verification
scalability [26], others have focused on using stability training methods for ReLUs
to pre-estimate the bounds for all ReLU neurons [50], providing local Lipschitz
bounds to the networks to simplify its verification [20], using interval bound
propagation during training to improve the verified robustness of the models [34],
or developing regularization methods for improving robustness and reducing the
verification time for autoencoders [5].

3 Evaluation

We use two datasets in our evaluation: MNIST [25], and a medical image dataset,
MedNIST [1]. The MedNIST dataset was assembled by B.J. Erickson (Department
of Radiology, Mayo Clinic). 2 The dataset contains 58954 medical images belonging
to 6 classes: AbdomenCT, BreastMRI, ChestCT, CSR, Hand, and HeadCT, which
are depicted in Figure 1. Each of the classes contains 10,000 images except for
BreastMRI, which contains 8,954 images.

2 Available at https://github.com/Project-MONAI/MONAI/

https://github.com/Project-MONAI/MONAI/
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(a) AbdomenCT (b) BreastMRI (c) ChestCT

(d) CXR (e) Hand (f) HeadCT

Fig. 1. MedNIST dataset visualization.

We present our study as a Latin Hypercube experiment design. A Latin hy-
percube typically consists of N variables divided into M equally sized intervals or
discrete values, where each sample is unique: each sample is the only one in each
axis-aligned hyperplane containing it [12]. Our experimental design consists of 3
variables (init method, reg method, random seed), the first two containing 3 dif-
ferent values and the latter one with 5 possible values. The experiments consist of
training 45 different models, 5 models per combination of hyperparameters: initial-
ization init method ∈ {He [18], Glorot [15], narrow normal3}, and regularization
scheme reg method ∈ {Dropout [38], Jacobian [19], L2 [24] }. Each of these
models are initialized with a different random seed, random seed ∈ {0, 1, 2, 3, 4},
to evaluate the training combination of init method × reg method.

Once all models are trained, we perform a verification analysis, for which we
select 300 images from the test dataset, and apply an L∞ attack with an ϵ =
{3/255}, for a total of 300 images evaluated for each of the 45 neural networks 4.
To verify the robustness of these networks against adversarial attacks, we only
chose images that are correctly classified by all networks, and select the same
number of images per class in each dataset: 50 images per class in MedNIST,
and 30 for MNIST. Formally, we evaluate the robustness of a neural network
F(z), with input image z ∈ Ri × j , perturbation parameter ϵ ∈ R and an input
set Zp containing zp such that Zp = {z : ||z − zp|| ≤ ϵ} that represents the set of
all possible perturbations of z. The neural network is locally robust at z if it

3 Weights are independently sampled from a normal distribution with 0 mean and
standard deviation of 0.01

4 The model architecture is depicted in Figure A in the Appendix.
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correctly classifies all the perturbed inputs zp to the same label as z, i.e., the
system is robust if F(zp) = F(z) for all zp ∈ Zp.

Our goal is to gain some insights to the following questions:

– Is there a training procedure that facilitates the verification of these models?
– Can the training and verification trends hold across datasets?
– How much of an effect has the initial random seed on our evaluation?
– Are there specific classes that are harder or easier to verify than others?

4 Results

We analyze the verification results based on 1) initialization, 2) regularization,
and 3) random seed, with respect to every class in the dataset. It is important
to remember that the robustness percentage may be greater than the accuracy,
as we only evaluated the models in images correctly classified by all of them.
On figures 2 to 7, on the left (subfig. a) we present the average percentage of
instances verified to be robust with respect to each image class, and on the right
(subfig. b), we present the average computation time to verify each instance
with respect to each image class5. In addition, we present a summary of the
verification results in the Appendix in Tables 1 and 2 for MedNIST and MNIST
respectively.

4.1 Initialization

In Fig. 2 we present the average robustness percentage and computation time
across all 15 models trained using each initialization method on the MedNIST
dataset. We observe that we are able to verify the largest number of instances
of the models trained using the narrow-normal initialization method, and much
faster than the other ones.

In Fig. 3 we present the average robustness percentage and computation time
across all 15 models trained using each initialization method on the MNIST
dataset. Similar to the MedNIST results but less pronounced, we observe that
we are able to verify the largest number of instances of the models trained using
the narrow-normal initialization method, and faster than the other ones, but
very close to the he initializer.

4.2 Regularization

In Fig. 4 we present the average robustness percentage and computation time
across all 15 models trained using each regularization method on the MedNIST
dataset. We observe that we are able to verify the largest number of instances of
the models trained using the Jacobian regularization method, and slightly faster
than the other ones.

5 Code is available at: https://github.com/verivital/nnv/tree/master/code/nnv/
examples/Submission/AISOLA2023

https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/AISOLA2023
https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/AISOLA2023
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Fig. 2. MedNIST Results. Comparison across initialization schemes with respect to
each image class.
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Fig. 3. MNIST Results. Comparison across initialization schemes with respect to each
image class.

In Fig. 5 we present the average robustness percentage and computation time
across all 15 models trained using each regularization method on the MNIST
dataset. We observe that we are able to compute the verification result of the
models using the dropout regularization method the fastest, about 2× faster
than Jacobian (fastest on MedNIST), but the number of instances across them
is very similar.

4.3 Random seed

In Fig. 6 we present the average robustness percentage and computation time
across all 9 models initialized using each random seed on the MedNIST dataset.
Models with random seed 1 are slightly faster to verify, with a larger number of
instances verified.

In Fig. 7 we present the average robustness percentage and computation time
across all 9 models initialized using each random seed on the MNIST dataset. In
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Fig. 4. MedNIST Results. Comparison across regularization techniques with respect to
each image class.
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Fig. 5. MNIST Results. Comparison across regularization techniques with respect to
each image class.

this case, there is not a clear “winner” in terms of number of instances verified,
but interestingly, there is a very defined pattern in the verification computation
across the random seeds, being 2 the fastest and 3 the slowest.

Regularization & Initialization combinations. Looking into these results,
we would expect to have several models with 100 % verified instances on the
MNIST dataset (total of 10, as observed in Table 2, and having the fastest
models to verify to be a model trained using the narrow-normal initialization
with the dropout regularizer, depicted in Fig. 8(b). For the MedNIST dataset,
the fastest combination is expected to be a narrow-normal initialized model with
either dropout or Jacobian regularization, as observed in Fig. 8(a). A surprising
result is that there are 6 models with 100 % verified instances on the MedNIST
benchmark, 4 of which are models trained using Jacobian regularization and
narrow-normal initialization method, as observed in Table 2.
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Fig. 6. MedNIST Results. Comparison across random seeds with respect to each image
class.
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Fig. 7. MNIST Results. Comparison across random seeds with respect to each image
class.

5 Discussion

Based on the results from Figures 2 to 7, one can observe that there are trends
that hold across the datasets, while some other results are very different from
each other. We begin with the similarities between the two datasets in terms
of verification results. Looking into the initialization schemes (Figs. 2 and 3),
we observe similar results, being narrow-normal initializer the fastest to verify
across both datasets, and the one with the highest number of instances verified.
Another common result from both datasets is L2 regularizer having the least
number of instances verified, and the slowest for MedNIST and second slowest
for MNIST, closer to the slowest (Jacobian) than the fastest (dropout).

There are also some clear differences across the datasets. For the MNIST
models, the computation time trends are held across all the classes, indicating
that the verification computation depends more on the model than the image
class evaluated, except for class 1 which is slightly slower. On the other hand,
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Fig. 8. Combination Results. Comparison across regularization & initialization combi-
nations in terms of verification computation time in seconds for MedNIST and MNIST
benchmarks.

for the MedNIST models, the verification times are very dependent on the image
type, as we can observe in Figs 2, 4, and 6, where the verification of AbdomenCT
images is the slowest, up to 10× slower than other classes, and CXR the second
slowest with 4× to 5× slower than other classes. AbdomenCT is also the class
with the least number of instances verified, followed by HeadCT and CXR.

These last results prompt two questions:

1. Why is there such a big difference in the computation time of the same model
when looking at two different images from the same dataset?

2. Do the lower robustness percentages mean the models are less robust, or are
these models harder to verify?

To answer these, we need to understand the verification method used. In this
paper, we use a sound and incomplete reachability method described in [41,44].
This method represents the sets using ImageStars [41], and computes the output
set using a layer-by-layer approach. We run several examples and timed every
operation within the reachability computation to understand where the timing
difference lies, and discovered (as expected) that the largest percentage of the
computation time is in the reachability computation of the ReLU layers. More
specifically, in the computation of the solution of the Linear Programming (LP)
problems. When using the approach in [44], if the estimated range contains the
zero point, we solve two LP problems to get the range of this specific input.
The solution to each of these LP problems is an overapproximation of the exact
range (sound and incomplete). Thus, it is not a coincidence that the class with
the slowest verification computation (AbdomenCT) is also the class with the
least number of instances verified. These two variables are correlated, as the
larger number of LP problems solved leads to a larger overapproximation of the
reachable set of the neural network.

The answer to the latter question is partially covered with the previous one.
These models are not necessarily less robust to these image types under L∞
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attacks, but harder to verify due to the accumulated overapproximations in
the reachability computation of ReLU layers. In addition, we attempted to find
counterexamples to the unknown instances using random examples within the
input sets, including the upper and lower bounds of the input set. However, we
were only able to find 2 and 1 counterexamples across all unknown instances for
the MedNIST and MNIST benchmarks respectively, as depicted in Tables 1 and
2.

Limitations

Dataset Coverage. For the robustness analysis, we randomly select 20 images
per class, which is less than 1% of the images in the dataset.

Model architecture. The analysis is limited to a single architecture with a convolu-
tional, a batch normalization, a ReLU, an average pooling and a fully-connected
layer. When looking closely at the results, we observe that the harder examples
(in terms of computation time) tend to activate both sides of the ReLU neurons
(input interval is less than 0 and greater than 0), requiring to solve a larger
amount of Linear Programming (LP) problems, e.g., taking up to 80% to 90% of
the total reachability computation time for some instances. Using other activation
function or architectures may reduce the complexity of these harder instances.

Methods evaluated. We were able to discover some trends on finding harder
verification examples for NNV, which is a reachability based tool using Star sets
[3,44,46,41]. Although we expect similar results in terms of computation time
trends, more evaluations are needed to determine if these trends also hold when
using other methods such as SMT or MILP based (e.g., Marabou [22]).

Complete vs incomplete verification. We evaluate the robustness of the networks
using a sound but incomplete method, so we can only guarantee the number of
instances verified to be robust, but no guarantees on the others. To prove the
network is not robust, we would have to find counterexamples, or we would need
to run a complete verifier (exact reachability methods in NNV) to determine
the certified robustness score of each network. However, the goal of this paper is
to understand the complexity of the verification analysis on different training
routines, and we would expect to observe a similar trend for the exact analysis
on the computation time aspect (the larger computation times come from having
to compute the reachability of ReLU neurons when the input interval value
is less than 0 and greater than 0, which has a similar effect on the complete
methods [43]).

6 Conclusion

In this study, we have presented two neural network verification benchmarks, one
from the MedNIST dataset [1] and one from MNIST [25] consisting of 45 neural
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networks and 300 verification instances per network, for each of the benchmarks.
On these, we have analyzed how different training procedures affect a sound and
incomplete reachability analysis technique implemented in NNV [41,44]. We can
observe that there are training combinations that lead to models that are easier
to verify using these methods. For the more challenging verification instances,
we discuss the reasons behind it: input ranges to the neurons in the ReLU layers
are “activating” both sides of the function (max(0, input)), requiring to solve a
larger number of LP problems, which in turn leads to a larger overapproximation
of the output reachable set, making the computation slower and more complex.
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A Appendix

Fig. 9. Neural network architecture of the models trained on MNIST. The architecture
for the MedNIST models is created with the same parameters as the MNIST ones, but
the difference is the size of the input. MNIST input is 28 × 28, while MedNIST images
are 64 × 64, thus leading to small differences such as in the number of weights across
some of the layers.
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Table 1. MedNIST summary results

Model Accuracy (%) Verification Results

Regularization Initialization Seed Robust Unkown Not Robust Avg. Time (s)

Dropout Glorot 0 99.27 276 24 0 28.87
Dropout Glorot 1 99.51 294 6 0 13.33
Dropout Glorot 2 99.52 285 15 0 11.93
Dropout Glorot 3 99.57 257 43 0 24.53
Dropout Glorot 4 99.63 286 14 0 17.36

Dropout He 0 99.65 257 43 0 43.81
Dropout He 1 99.60 286 14 0 22.23
Dropout He 2 99.57 203 96 0 28.40
Dropout He 3 99.73 235 65 0 42.11
Dropout He 4 99.70 196 104 0 43.95

Dropout Narrow-normal 0 99.55 300 0 0 10.49
Dropout Narrow-normal 1 99.50 294 6 0 11.72
Dropout Narrow-normal 2 99.61 293 7 0 14.85
Dropout Narrow-normal 3 99.55 296 4 0 5.17
Dropout Narrow-normal 4 99.66 300 0 0 9.35

Jacobian Glorot 0 99.79 288 12 0 19.55
Jacobian Glorot 1 99.79 291 9 0 20.80
Jacobian Glorot 2 99.80 289 11 0 19.97
Jacobian Glorot 3 99.80 289 11 0 19.98
Jacobian Glorot 4 99.78 292 8 0 21.76

Jacobian He 0 99.67 300 0 0 14.46
Jacobian He 1 99.75 298 2 0 14.72
Jacobian He 2 99.74 298 2 0 14.85
Jacobian He 3 99.74 298 2 0 14.81
Jacobian He 4 99.77 297 3 0 15.00

Jacobian Narrow-normal 0 99.69 300 0 0 10.32
Jacobian Narrow-normal 1 99.76 295 5 0 9.51
Jacobian Narrow-normal 2 99.77 300 0 0 10.33
Jacobian Narrow-normal 3 99.78 300 0 0 10.32
Jacobian Narrow-normal 4 99.78 300 0 0 10.31

L2 Glorot 0 99.31 239 61 0 38.67
L2 Glorot 1 99.51 292 8 0 18.25
L2 Glorot 2 99.55 273 27 0 16.24
L2 Glorot 3 99.60 229 71 0 32.63
L2 Glorot 4 99.65 277 22 1 23.67

L2 He 0 99.69 260 39 1 45.94
L2 He 1 99.57 292 8 0 27.76
L2 He 2 99.58 196 104 0 39.09
L2 He 3 99.72 274 26 0 42.45
L2 He 4 99.72 188 112 0 44.44

L2 Narrow-normal 0 99.71 294 6 0 35.24
L2 Narrow-normal 1 99.53 292 8 0 10.52
L2 Narrow-normal 2 99.61 293 7 0 17.80
L2 Narrow-normal 3 99.55 298 2 0 9.21
L2 Narrow-normal 4 99.68 299 1 0 12.43
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Table 2. MNIST summary results

Model Accuracy (%) Verification Results

Regularization Initialization Seed Robust Unkown Not Robust Avg. Time (s)

Dropout Glorot 0 95.61 300 0 0 4.15
Dropout Glorot 1 95.54 299 1 0 3.87
Dropout Glorot 2 93.43 293 7 0 0.32
Dropout Glorot 3 96.56 298 2 0 3.90
Dropout Glorot 4 94.10 298 2 0 0.41

Dropout He 0 92.79 297 3 0 4.04
Dropout He 1 93.62 299 1 0 0.32
Dropout He 2 93.82 299 1 0 0.26
Dropout He 3 95.97 299 1 0 4.19
Dropout He 4 95.81 299 0 1 4.05

Dropout Narrow-normal 0 95.92 300 0 0 0.52
Dropout Narrow-normal 1 93.31 299 1 0 0.32
Dropout Narrow-normal 2 94.67 299 1 0 0.38
Dropout Narrow-normal 3 96.03 300 0 0 4.53
Dropout Narrow-normal 4 95.84 300 0 0 0.48

Jacobian Glorot 0 96.37 299 1 0 4.65
Jacobian Glorot 1 96.86 298 2 0 6.11
Jacobian Glorot 2 97.03 299 1 0 6.32
Jacobian Glorot 3 97.16 296 4 0 5.58
Jacobian Glorot 4 97.08 299 1 0 5.36

Jacobian He 0 94.81 298 2 0 5.89
Jacobian He 1 96.04 297 3 0 3.93
Jacobian He 2 96.56 299 1 0 2.57
Jacobian He 3 96.97 299 1 0 1.75
Jacobian He 4 96.83 296 4 0 1.57

Jacobian Narrow-normal 0 96.50 300 0 0 6.08
Jacobian Narrow-normal 1 97.12 299 1 0 3.46
Jacobian Narrow-normal 2 96.97 300 0 0 2.53
Jacobian Narrow-normal 3 97.23 299 1 0 1.96
Jacobian Narrow-normal 4 97.20 299 1 0 1.98

L2 Glorot 0 96.11 300 0 0 3.64
L2 Glorot 1 95.63 296 4 0 7.00
L2 Glorot 2 94.49 293 7 0 0.30
L2 Glorot 3 96.29 295 5 0 7.08
L2 Glorot 4 94.49 299 1 0 0.42

L2 He 0 92.88 300 0 0 3.54
L2 He 1 93.73 295 5 0 3.60
L2 He 2 93.47 300 0 0 0.27
L2 He 3 96.03 296 4 0 3.72
L2 He 4 96.18 300 0 0 3.67

L2 Narrow-normal 0 96.20 299 1 0 3.72
L2 Narrow-normal 1 93.27 297 3 0 0.29
L2 Narrow-normal 2 94.97 299 1 0 3.72
L2 Narrow-normal 3 96.68 299 1 0 7.02
L2 Narrow-normal 4 95.72 298 2 0 3.70
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