Empirical Analysis of Benchmark Generation for
the Verification of Neural Network Image
Classifiers

Diego Manzanas Lopez' and Taylor T. Johnson'

Vanderbilt University, Nashville, TN
{diego.manzanas.lopez,taylor. johnson}@vanderbilt.edu

Abstract. Deep Learning success in a wide range of applications, such
as image recognition and natural language processing, has led to the
increasing usage of this technology in many domains, including safety-
critical applications such as autonomous cars and medicine. The usage of
the models, e.g., neural networks, in safety critical applications demands
a thorough evaluation from a component and system level perspective. In
these domains, formal methods have the ability to guarantee the correct
operation of these components. Despite great efforts in the formal verifica-
tion of neural networks in the past decade, several challenges remain. One
of these challenges is the development of neural networks for easier verifi-
cation. In this work, we present an empirical analysis, presented as a Latin
Hypercube experiment design, in which we evaluate how regularization
and initialization methods across different random seeds on two datasets
affect the verification analysis of a reachability analysis technique for the
verification of neural networks. We show that there are certain training
routines that simplify the formal verification task. Lastly, a discussion
on how these training approaches impact the robustness verification and
reachability computation of the method utilized is included.

Keywords: Formal Verification, Medical Imaging, Deep Learning, Reach-
ability Analysis

1 Introduction

Neural Networks (NN) are a type of machine learning models that are able
to learn complex patterns from data, and have been used to achieve state-of-
the-art results in a wide variety of tasks such as image recognition [23]6]14]
and natural language processing [7J3229]. However, their usage in safety-critical
domains requires an extensive and rigorous analysis of these models from both a
component and system level perspective. Formal methods are techniques that
are able to provide guarantees on the functionality of these models to ensure
the correct behavior in these domains. In the past several years, there have
been numerous formal verification methods and tools developed to address this
challenge [AT213TI2822149I27I30/3548]. Despite recent efforts, several challenges
in existing state-of-the-art methods and tools remain due to the complexity of

2 D. Manzanas Lopez et al.

these models and constant and rapid development of new NN architectures and
models. One of the main challenges is the scalability of verification methods to
large models, such as those use in Semantic Segmentation [31J45] or LLMs [32].
Another challenge is the disconnect between NN development and verification.
Typically, first goes the development and training of the neural network, followed
by the verification approach on the learned network (fixed parameters). If the
networks do not meet the formal requirements or the methods are not able to
prove them due to the complexity of the models, either new methods are needed
to be developed or a new model is needed to be trained.

In this manuscript, we focus on the latter challenge, with the goal of providing
some guidance and understanding on how training procedures affect formal
verification methods. This idea of this project began when we discovered a large
difference in the reachability computation times (order of 10 to 100 times faster)
when analyzing the robustness of a neural network classifier on a medical image
dataset. These findings were present not only in individual instances of a class,
but were general to the whole set of images analyzed from the same class. After
these observations, we decided to dig a little deeper to understand the reason
behind these differences. Is it specific to the images evaluated? Is it just for a
specific model? What if we change the training method, will a similar verification
patter hold for the new method as well?

In this manuscript, we present a set of experiments that provide some insights
to these questions using the verification tool NNV [46l30]. The contributions of
this work are:

— Introduction of a new benchmark for neural network verification in the area
of medical imaging (MedNIST [I]).

— Compute the formal verification of two benchmarks, both trained on gray-
scale image datasets, consisting of a total of 45 models and 300 instances
analyzed per benchmark.

— Analysis of NNV [41I30] methods on these two benchmarks, including a
discussion of the training effects on the reachability method used.

2 Related Work

Neural network verification. The area of neural network verification has grown
immensely in recent years, having the community establish and develop standard
input formatﬂ These have been especially useful for friendly competitions [2831]
as well as for method and tool comparison that enable a faster and (hopefully)
fairer comparison across tools [49482T222I30/46/31]. Despite recent efforts, the
majority of these methods focus on verifying feedforward and convolutional
NN architectures. These approaches can generally be classified into sound or
unsound, and complete or incomplete. Unsound approaches are less common for
NN verification than sound approaches, as they cannot provide formal guarantees
on the computer results. They usually refer to probabilistic analysis such as [42)

! vonlib: https://www.vnnlib.org

https://www.vnnlib.org

Analysis of Benchmark Generation for Neural Network Verification 3

or under approximations of the actual verification result, which are typically
faster to compute than sound approximations [I7]. Complete and sound methods
refer to algorithms that can precisely analyze whether a given property holds on
a model, also referred to as exact methods. A disadvantage from these methods is
how computationally expensive these are, often becoming prohibitive to compute,
thus suffering from scalability issues for large models or inputs sets [45I31]. These
methods are often limited in the type of layers and architectures they can be used
for. These can be Satisfiability Modulo Theories (SMT) based methods [22121],
Mixed Integer Linear Program (MILP) based methods [40], reachability analysis
methods [45], and others such as branch and bound methods [4]. To overcome
some of these challenges, sound and incomplete methods have been developed.
These methods often introduced a tradeoff between precision, scalability and
computational power needed. These methods are capable of computing the
verification results faster than sound and complete methods, however, due to the
overapproximation computations, unknown results may arise (cannot guarantee
specification is violated nor satisfied). Several of these methods are based on
abstract interpretation, some of which have demonstrated to outperform complete
methods by orders of magnitude (time wise) [31]. Recent work in [I1] has enhanced
the abstraction-based verification of neural networks via residual reasoning.

Training & Verification & Repair. There have also been some works focusing on
repairing or retraining neural networks when a specification is violated [SI39I13].
Many of these efforts focus on fine-tuning or retraining the network when inputs
violating the output constraints are found [FIIT0I3336], directly modifying the
parameters of the network to correct violating inputs [QT6/47], or on modifying
the architecture of the neural network to facilitate the repair of the model such as
in [37]. Another area that has seen some efforts is to directly train neural networks
for enhancing the verification approaches. Some works focus on replacing the
ReLU layers by Parametric ReLLUs to enhance both robustness and verification
scalability [26], others have focused on using stability training methods for ReLUs
to pre-estimate the bounds for all ReLU neurons [50], providing local Lipschitz
bounds to the networks to simplify its verification [20], using interval bound
propagation during training to improve the verified robustness of the models [34],
or developing regularization methods for improving robustness and reducing the
verification time for autoencoders [5].

3 Evaluation

We use two datasets in our evaluation: MNIST [25], and a medical image dataset,
MedNIST [1]. The MedNIST dataset was assembled by B.J. Erickson (Department
of Radiology, Mayo Clinic). E|The dataset contains 58954 medical images belonging
to 6 classes: AbdomenCT, Breast MRI, ChestCT, CSR, Hand, and HeadCT, which
are depicted in Figure[I] Each of the classes contains 10,000 images except for
BreastMRI, which contains 8,954 images.

2 Available at https://github.com/Project-MONAT/MONAI/

https://github.com/Project-MONAI/MONAI/

4 D. Manzanas Lopez et al.

(a) AbdomenCT (b) BreastMRI (¢) ChestCT

(d) CXR (e) Hand (f) HeadCT

Fig. 1. MedNIST dataset visualization.

We present our study as a Latin Hypercube experiment design. A Latin hy-
percube typically consists of N variables divided into M equally sized intervals or
discrete values, where each sample is unique: each sample is the only one in each
axis-aligned hyperplane containing it [I2]. Our experimental design consists of 3
variables (init_method, reg_method, random_seed), the first two containing 3 dif-
ferent values and the latter one with 5 possible values. The experiments consist of
training 45 different models, 5 models per combination of hyperparameters: initial-
ization init_method € {He [18], Glorot [15], narrow,normaﬂ}, and regularization
scheme reg_method € {Dropout [38], Jacobian [19], Lo [24] }. Each of these
models are initialized with a different random seed, random_seed € {0,1,2,3,4},
to evaluate the training combination of init_method x reg_method.

Once all models are trained, we perform a verification analysis, for which we
select 300 images from the test dataset, and apply an L., attack with an € =
{3/255}, for a total of 300 images evaluated for each of the 45 neural networks El
To verify the robustness of these networks against adversarial attacks, we only
chose images that are correctly classified by all networks, and select the same
number of images per class in each dataset: 50 images per class in MedNIST,
and 30 for MNIST. Formally, we evaluate the robustness of a neural network
F(z), with input image z € R? X J, perturbation parameter ¢ € R and an input
set Z, containing z, such that Z, = {z: ||z — zp|| < €} that represents the set of
all possible perturbations of z. The neural network is locally robust at z if it

3 Weights are independently sampled from a normal distribution with 0 mean and
standard deviation of 0.01
4 The model architecture is depicted in Figure in the Appendix.

Analysis of Benchmark Generation for Neural Network Verification 5

correctly classifies all the perturbed inputs z, to the same label as z, i.e., the
system is robust if F(z,) = F(z) for all z, € Z,,.
Our goal is to gain some insights to the following questions:

Is there a training procedure that facilitates the verification of these models?
— Can the training and verification trends hold across datasets?

How much of an effect has the initial random seed on our evaluation?

— Are there specific classes that are harder or easier to verify than others?

4 Results

We analyze the verification results based on 1) initialization, 2) regularization,
and 3) random seed, with respect to every class in the dataset. It is important
to remember that the robustness percentage may be greater than the accuracy,
as we only evaluated the models in images correctly classified by all of them.
On figures [2| to |7, on the left (subfig. a) we present the average percentage of
instances verified to be robust with respect to each image class, and on the right
(subfig. b), we present the average computation time to verify each instance
with respect to each image clas&ﬂ In addition, we present a summary of the
verification results in the Appendix in Tables [I] and 2] for MedNIST and MNIST
respectively.

4.1 Initialization

In Fig. 2] we present the average robustness percentage and computation time
across all 15 models trained using each initialization method on the MedNIST
dataset. We observe that we are able to verify the largest number of instances
of the models trained using the narrow-normal initialization method, and much
faster than the other ones.

In Fig. [3] we present the average robustness percentage and computation time
across all 15 models trained using each initialization method on the MNIST
dataset. Similar to the MedNIST results but less pronounced, we observe that
we are able to verify the largest number of instances of the models trained using
the narrow-normal initialization method, and faster than the other ones, but
very close to the he initializer.

4.2 Regularization

In Fig. [@] we present the average robustness percentage and computation time
across all 15 models trained using each regularization method on the MedNIST
dataset. We observe that we are able to verify the largest number of instances of
the models trained using the Jacobian regularization method, and slightly faster
than the other ones.

5 Code is available at: https://github.com/verivital/nnv/tree/master/code/nnv/
examples/Submission/AISOLA2023

https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/AISOLA2023
https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/AISOLA2023

6 D. Manzanas Lopez et al.

— — —narrow-normal

Robust %
o
®

o
3
o

— — —narrow-normal

o
3

0.65

0.6

0
< @ & < < N < @ o <
9 0 9 < s < o™ C
d\e‘} o N \,&& o @Ba“*‘ d\'a?‘ ot R \,\eb‘\

\Y
“\e‘\c ,oa““\?\
wﬁo & W(;o

(a) Robustness (b) Computation Time

Fig. 2. MedNIST Results. Comparison across initialization schemes with respect to
each image class.

0.995

—o—glorot \

—e—he \

— — —narrow-normal | |
\

0.975
0

(a) Robustness (b) Computation Time

Fig. 3. MNIST Results. Comparison across initialization schemes with respect to each
image class.

In Fig. |p| we present the average robustness percentage and computation time
across all 15 models trained using each regularization method on the MNIST
dataset. We observe that we are able to compute the verification result of the
models using the dropout regularization method the fastest, about 2x faster
than Jacobian (fastest on MedNIST), but the number of instances across them
is very similar.

4.3 Random seed

In Fig. [6] we present the average robustness percentage and computation time
across all 9 models initialized using each random seed on the MedNIST dataset.
Models with random seed I are slightly faster to verify, with a larger number of
instances verified.

In Fig. [7] we present the average robustness percentage and computation time
across all 9 models initialized using each random seed on the MNIST dataset. In

Analysis of Benchmark Generation for Neural Network Verification 7

0.95

o
©

Robust %

o
o
&

<

0.8

0.75

9 @ el o o <t S <t AN ¢ c
w“@“ q,xe“'"\h o N A & o ¢ v ¢
B

(a) Robustness (b) Computation Time

Fig. 4. MedNIST Results. Comparison across regularization techniques with respect to
each image class.

0.995

0.99

—%— dropout
0.985 —e—jacobian
- 2

25
s
0.98 v —5—dropout 2 /\4& —- "
obian

0.975 15
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Robust %
Time (s)
w

(a) Robustness (b) Computation Time

Fig.5. MNIST Results. Comparison across regularization techniques with respect to
each image class.

this case, there is not a clear “winner” in terms of number of instances verified,
but interestingly, there is a very defined pattern in the verification computation
across the random seeds, being 2 the fastest and 8 the slowest.

Regularization & Initialization combinations. Looking into these results,
we would expect to have several models with 100 % verified instances on the
MNIST dataset (total of 10, as observed in Table [2| and having the fastest
models to verify to be a model trained using the narrow-normal initialization
with the dropout regularizer, depicted in Fig. For the MedNIST dataset,
the fastest combination is expected to be a narrow-normal initialized model with
either dropout or Jacobian regularization, as observed in Fig. A surprising
result is that there are 6 models with 100 % verified instances on the MedNIST
benchmark, 4 of which are models trained using Jacobian regularization and
narrow-normal initialization method, as observed in Table [2]

8 D. Manzanas Lopez et al.

0.9

Robust %
o
@
&

o
)

Q < < & < Q@ < @ N
e’o""N\ c,ves\c of e \»\&& z@‘N c,x«'*\o o i

(a) Robustness (b) Computation Time

Fig. 6. MedNIST Results. Comparison across random seeds with respect to each image
class.

0.995
0.99

0.985

Robust %

0.98

0.975

0.97

(a) Robustness (b) Computation Time

Fig. 7. MNIST Results. Comparison across random seeds with respect to each image
class.

5 Discussion

Based on the results from Figures [2| to[7] one can observe that there are trends
that hold across the datasets, while some other results are very different from
each other. We begin with the similarities between the two datasets in terms
of verification results. Looking into the initialization schemes (Figs. [2| and ,
we observe similar results, being narrow-normal initializer the fastest to verify
across both datasets, and the one with the highest number of instances verified.
Another common result from both datasets is Ly regularizer having the least
number of instances verified, and the slowest for MedNIST and second slowest
for MNIST, closer to the slowest (Jacobian) than the fastest (dropout).

There are also some clear differences across the datasets. For the MNIST
models, the computation time trends are held across all the classes, indicating
that the verification computation depends more on the model than the image
class evaluated, except for class 1 which is slightly slower. On the other hand,

Analysis of Benchmark Generation for Neural Network Verification 9

140 A
— & —dropout e e —

120 [\ —e—dropout,,
\ — = —dropout, 5 -6 - dropomG

100 s« jacobiang —o— dropout,,

jacobian, / \\ — - —dmpoutN

80" \ ~oobiany | A /N ———Jacobiang S
60\ —e—L2g 2 / " jacobian,,)
12, = /\ == |- — —jacobian | = ——3
,, — L2y 7\ — 12 e
. / °

Time (s)

40

—e— LZH

20

—+-L2,

0 ——==

N N < @ N < -1
< \n O 8 & C - [N SR N S G Y
" s %‘e"‘%\“\ o C i « o
[\

(a) MedNIST (b) MNIST

Fig. 8. Combination Results. Comparison across regularization & initialization combi-
nations in terms of verification computation time in seconds for MedNIST and MNIST
benchmarks.

for the MedNIST models, the verification times are very dependent on the image

type, as we can observe in Figs[2] [4 and [6] where the verification of AbdomenCT

images is the slowest, up to 10x slower than other classes, and CXR the second

slowest with 4x to 5x slower than other classes. AbdomenCT is also the class

with the least number of instances verified, followed by HeadCT and CXR.
These last results prompt two questions:

1. Why is there such a big difference in the computation time of the same model
when looking at two different images from the same dataset?

2. Do the lower robustness percentages mean the models are less robust, or are
these models harder to verify?

To answer these, we need to understand the verification method used. In this
paper, we use a sound and incomplete reachability method described in [41144].
This method represents the sets using ImageStars [41], and computes the output
set using a layer-by-layer approach. We run several examples and timed every
operation within the reachability computation to understand where the timing
difference lies, and discovered (as expected) that the largest percentage of the
computation time is in the reachability computation of the ReLLU layers. More
specifically, in the computation of the solution of the Linear Programming (LP)
problems. When using the approach in [44], if the estimated range contains the
zero point, we solve two LP problems to get the range of this specific input.
The solution to each of these LP problems is an overapproximation of the exact
range (sound and incomplete). Thus, it is not a coincidence that the class with
the slowest verification computation (AbdomenCT) is also the class with the
least number of instances verified. These two variables are correlated, as the
larger number of LP problems solved leads to a larger overapproximation of the
reachable set of the neural network.

The answer to the latter question is partially covered with the previous one.
These models are not necessarily less robust to these image types under Lo

10 D. Manzanas Lopez et al.

attacks, but harder to verify due to the accumulated overapproximations in
the reachability computation of ReLU layers. In addition, we attempted to find
counterexamples to the unknown instances using random examples within the
input sets, including the upper and lower bounds of the input set. However, we
were only able to find 2 and 1 counterexamples across all unknown instances for
the MedNIST and MNIST benchmarks respectively, as depicted in Tables [1| and

Limitations

Dataset Coverage. For the robustness analysis, we randomly select 20 images
per class, which is less than 1% of the images in the dataset.

Model architecture. The analysis is limited to a single architecture with a convolu-
tional, a batch normalization, a ReLU, an average pooling and a fully-connected
layer. When looking closely at the results, we observe that the harder examples
(in terms of computation time) tend to activate both sides of the ReLU neurons
(input interval is less than 0 and greater than 0), requiring to solve a larger
amount of Linear Programming (LP) problems, e.g., taking up to 80% to 90% of
the total reachability computation time for some instances. Using other activation
function or architectures may reduce the complexity of these harder instances.

Methods evaluated. We were able to discover some trends on finding harder
verification examples for NNV, which is a reachability based tool using Star sets
[3l44146/41]. Although we expect similar results in terms of computation time
trends, more evaluations are needed to determine if these trends also hold when
using other methods such as SMT or MILP based (e.g., Marabou [22]).

Complete vs incomplete verification. We evaluate the robustness of the networks
using a sound but incomplete method, so we can only guarantee the number of
instances verified to be robust, but no guarantees on the others. To prove the
network is not robust, we would have to find counterexamples, or we would need
to run a complete verifier (exact reachability methods in NNV) to determine
the certified robustness score of each network. However, the goal of this paper is
to understand the complexity of the verification analysis on different training
routines, and we would expect to observe a similar trend for the exact analysis
on the computation time aspect (the larger computation times come from having
to compute the reachability of ReLU neurons when the input interval value
is less than 0 and greater than 0, which has a similar effect on the complete
methods [43]).

6 Conclusion

In this study, we have presented two neural network verification benchmarks, one
from the MedNIST dataset [I] and one from MNIST [25] consisting of 45 neural

Analysis of Benchmark Generation for Neural Network Verification 11

networks and 300 verification instances per network, for each of the benchmarks.
On these, we have analyzed how different training procedures affect a sound and
incomplete reachability analysis technique implemented in NNV [41J44]. We can
observe that there are training combinations that lead to models that are easier
to verify using these methods. For the more challenging verification instances,
we discuss the reasons behind it: input ranges to the neurons in the ReLU layers
are “activating” both sides of the function (maxz(0, input)), requiring to solve a
larger number of LP problems, which in turn leads to a larger overapproximation
of the output reachable set, making the computation slower and more complex.

Acknowledgements The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) through grant numbers
2028001, 2220426 and 2220401, the Defense Advanced Research Projects Agency
(DARPA) under contract number FA8750-23-C-0518, and the Air Force Office
of Scientific Research (AFOSR) under contract number FA9550-22-1-0019 and
FA9550-23-1-0135. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect
the views of AFOSR, DARPA, or NSF.

References

1. apolanco3225: Medical mnist classification. https://github.com/apolanco3225/
Medical-MNIST-Classification (2017)

2. Bak, S.: nnenum: Verification of relu neural networks with optimized abstraction
refinement. In: NASA Formal Methods Symposium. pp. 19-36. Springer (2021)

3. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification. pp.
401-420. Springer International Publishing, Cham (2017)

4. Bunel, R., Turkaslan, I., Torr, P.H.S., Kumar, M.P., Lu, J., Kohli, P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(1)
(jan 2020)

5. Boing, B., Miiller, E.: On training and verifying robust autoencoders. In: 2022 IEEE
9th International Conference on Data Science and Advanced Analytics (DSAA).
pp. 1-10 (2022). https://doi.org/10.1109/DSAA54385.2022.10032334

6. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. arXiv preprint arXiv:1202.2745 (2012)

7. Collobert, R., Weston, J.: A unified architecture for natural language process-
ing: Deep neural networks with multitask learning. In: Proceedings of the 25th
international conference on Machine learning. pp. 160-167. ACM (2008)

8. Crugz, U.S., Ferlez, J., Shoukry, Y.: Safe-by-repair: A convex optimization approach
for repairing unsafe two-level lattice neural network controllers. In: 2022 IEEE
61st Conference on Decision and Control (CDC). pp. 3383-3388 (2022). https:
//doi.org/10.1109/CDC51059.2022.9993239

9. Dong, G., Sun, J., Wang, J., Wang, X., Dai, T.: Towards repairing neural networks
correctly (2021)

10. Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-Vincentelli, A., Seshia,
S.A.: Counterexample-guided data augmentation. In: Proceedings of the 27th

https://github.com/apolanco3225/Medical-MNIST-Classification
https://github.com/apolanco3225/Medical-MNIST-Classification
https://doi.org/10.1109/DSAA54385.2022.10032334
https://doi.org/10.1109/DSAA54385.2022.10032334
https://doi.org/10.1109/CDC51059.2022.9993239
https://doi.org/10.1109/CDC51059.2022.9993239
https://doi.org/10.1109/CDC51059.2022.9993239
https://doi.org/10.1109/CDC51059.2022.9993239

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D. Manzanas Lopez et al.

International Joint Conference on Artificial Intelligence. p. 2071-2078. IJCAT’18,
AAALI Press (2018)

Elboher, Y.Y., Cohen, E., Katz, G.: Neural network verification using residual
reasoning. In: Software Engineering and Formal Methods: 20th International Con-
ference, SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings. p.
173-189. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/
978-3-031-17108-6_11

Fisher, R.A.: Statistical methods for research workers. In: Breakthroughs in statistics:
Methodology and distribution, pp. 66—-70. Springer (1970)

Fu, F., Li, W.: Sound and complete neural network repair with minimality and
locality guarantees. In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=xS8AMYiEav3

Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2414-2423 (2016)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics. Proceedings
of Machine Learning Research, vol. 9, pp. 249-256. PMLR, Chia Laguna Resort,
Sardinia, Italy (13-15 May 2010)

Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural
networks using verification. In: Albert, E., Kovacs, L. (eds.) LPAR23. LPAR-23: 23rd
International Conference on Logic for Programming, Artificial Intelligence and Rea-
soning. EPiC Series in Computing, vol. 73, pp. 260-278. EasyChair (2020). https:
//doi.org/10.29007/699q, https://easychair.org/publications/paper/CWhF
Goubault, E., Putot, S.: Rino: Robust inner and outer approximated reachability
of neural networks controlled systems. In: Shoham, S., Vizel, Y. (eds.) Computer
Aided Verification. pp. 511-523. Springer International Publishing, Cham (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: 2015 IEEE International Conference
on Computer Vision (ICCV). pp. 1026-1034 (2015). https://doi.org/10.1109/
ICCV.2015.123

Hoffman, J., Roberts, D.A., Yaida, S.: Robust learning with jacobian regularization
(2019)

Huang, Y., Zhang, H., Shi, Y., Kolter, J.Z., Anandkumar, A.: Training certifiably
robust neural networks with efficient local lipschitz bounds. In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural
Information Processing Systems. vol. 34, pp. 22745-22757. Curran Associates, Inc.
(2021)

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification. pp. 97-117. Springer (2017)

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zelji¢, A., et al.: The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided
Verification. pp. 443-452. Springer (2019)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems. pp. 1097-1105 (2012)

https://doi.org/10.1007/978-3-031-17108-6_11
https://doi.org/10.1007/978-3-031-17108-6_11
https://doi.org/10.1007/978-3-031-17108-6_11
https://doi.org/10.1007/978-3-031-17108-6_11
https://openreview.net/forum?id=xS8AMYiEav3
https://doi.org/10.29007/699q
https://doi.org/10.29007/699q
https://doi.org/10.29007/699q
https://doi.org/10.29007/699q
https://easychair.org/publications/paper/CWhF
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

Analysis of Benchmark Generation for Neural Network Verification 13

Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In:
Proceedings of the 4th International Conference on Neural Information Processing
Systems. p. 950-957. NIPS’91, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1991)

LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)

Leofante, F., Henriksen, P., Lomuscio, A.: Verification-friendly networks: the case
for parametric relus. In: Workshop on Formal Verification of Machine Learning,
Colocated with ICML 2022. IEEE (2022)

Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algo-
rithms for verifying deep neural networks. Foundations and Trends in Optimization
4(3-4), 244-404 (2021). https://doi.org/10.1561/2400000035

Lopez, D.M., Althoff, M., Benet, L., Chen, X., Fan, J., Forets, M., Huang, C., John-
son, T.T., Ladner, T., Li, W., Schilling, C., Zhu, Q.: Arch-comp22 category report:
Artificial intelligence and neural network control systems (ainncs) for continuous
and hybrid systems plants. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet,
J. (eds.) Proceedings of 9th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH22). EPiC Series in Computing, vol. 90,
pp. 142-184. EasyChair (2022)

Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

Manzanas Lopez, D., Choi, S.W., Tran, H.D., Johnson, T.T.: Nnv 2.0: The neural
network verification tool. In: Enea, C., Lal, A. (eds.) Computer Aided Verification.
pp. 397-412. Springer Nature Switzerland, Cham (2023)

Miiller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international
verification of neural networks competition (vnn-comp 2022): Summary and results
(2022)

OpenAl: Gpt-4 technical report (2023)

Ren, X., Yu, B., Qi, H., Juefei-Xu, F., Li, Z., Xue, W., Ma, L., Zhao, J.: Few-shot
guided mix for dnn repairing. In: Proceedings - 2020 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2020. pp. 717-721. Proceedings
- 2020 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2020, Institute of Electrical and Electronics Engineers Inc., United States
(Sep 2020). https://doi.org/10.1109/ICSME46990 . 2020.00079

Shi, Z., Wang, Y., Zhang, H., Yi, J., Hsieh, C.J.: Fast certified robust training with
short warmup. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan,
J.W. (eds.) Advances in Neural Information Processing Systems. vol. 34, pp. 18335—
18349. Curran Associates, Inc. (2021), https://proceedings.neurips.cc/paper_
files/paper/2021/file/988£9153ac4fd966ea302dd9ab9bael5-Paper . pdf

Singh, G., Gehr, T., Mirman, M., Piischel, M., Vechev, M.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems. vol. 31. Curran Associates, Inc. (2018)

Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S., Babenko, A.: Editable neural
networks. In: International Conference on Learning Representations (2020)
Sotoudeh, M., Thakur, A.V.: Provable repair of deep neural networks. In: Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. p. 588-603. PLDI 2021, Association for
Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3453483 .3454064

https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://doi.org/10.1109/ICSME46990.2020.00079
https://doi.org/10.1109/ICSME46990.2020.00079
https://proceedings.neurips.cc/paper_files/paper/2021/file/988f9153ac4fd966ea302dd9ab9bae15-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/988f9153ac4fd966ea302dd9ab9bae15-Paper.pdf
https://doi.org/10.1145/3453483.3454064
https://doi.org/10.1145/3453483.3454064
https://doi.org/10.1145/3453483.3454064
https://doi.org/10.1145/3453483.3454064

14

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

D. Manzanas Lopez et al.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(56), 1929-1958 (2014), http://jmlr.org/papers/
vi5/srivastavalda.html

Tao, Z., Nawas, S., Mitchell, J., Thakur, A.V.: Architecture-preserving provable
repair of deep neural networks. Proc. ACM Program. Lang. 7(PLDI) (jun 2023).
https://doi.org/10.1145/3591238

Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

Tran, H.D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using imagestars. In: 32nd International Conference on Computer-
Aided Verification (CAV). Springer (July 2020)

Tran, H.D., Choi, S., Okamoto, H., Hoxha, B., Fainekos, G., Prokhorov, D.: Quan-
titative verification for neural networks using probstars. In: Proceedings of the
26th ACM International Conference on Hybrid Systems: Computation and Control.
HSCC ’23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3575870.3587112

Tran, H.D., Musau, P., Lopez, D.M., Yang, X., Nguyen, L.V., Xiang, W., Johnson,
T.T.: Star-based reachability analsysis for deep neural networks. In: 23rd Interna-
tional Symposisum on Formal Methods (FM’19). Springer International Publishing
(October 2019)

Tran, H.D., Pal, N., Lopez, D.M., Musau, P., Yang, X., Nguyen, L.V., Xiang, W.,
Bak, S., Johnson, T.T.: Verification of piecewise deep neural networks: A star set
approach with zonotope pre-filter. Form. Asp. Comput. 33(4-5), 519-545 (aug
2021)

Tran, H.D., Pal, N., Musau, P., Yang, X., Hamilton, N.P., Lopez, D.M., Bak, S.,
Johnson, T.T.: Robustness verification of semantic segmentation neural networks
using relaxed reachability. In: 33rd International Conference on Computer-Aided
Verification (CAV). Springer (July 2021)

Tran, H.D., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak, S.,
Johnson, T.T.: NNV: The neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. In: 32nd International Conference on
Computer-Aided Verification (CAV) (July 2020)

Usman, M., Gopinath, D., Sun, Y., Noller, Y., Pasareanu, C.S.: Nnrepair: Constraint-
based repair of neural network classifiers. In: Silva, A., Leino, K.R.M. (eds.) Com-
puter Aided Verification. pp. 3-25. Springer International Publishing, Cham (2021)
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th {USENIX} Security Symposium
({USENIX} Security 18). pp. 1599-1614 (2018)

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for com-
plete and incomplete neural network verification. Advances in Neural Information
Processing Systems 34 (2021)

Xiao, K.Y., Tjeng, V., Shafiullah, N.M.M., Madry, A.: Training for faster adversarial
robustness verification via inducing reLU stability. In: International Conference on
Learning Representations (2019), https://openreview.net/forum?id=BJfIVjAcKm
Yang, X., Yamaguchi, T., Tran, H.D., Hoxha, B., Johnson, T.T., Prokhorov, D.:
Neural network repair with reachability analysis. In: Bogomolov, S., Parker, D.
(eds.) Formal Modeling and Analysis of Timed Systems. pp. 221-236. Springer
International Publishing, Cham (2022)

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1145/3591238
https://doi.org/10.1145/3591238
https://doi.org/10.1145/3575870.3587112
https://doi.org/10.1145/3575870.3587112
https://openreview.net/forum?id=BJfIVjAcKm

Analysis of Benchmark Generation for Neural Network Verification 15

A Appendix

- - Name Type Activations

¢ |imageinput
| 1 imageinput Image Input 28(S) x 28(S) x 1(C) x 1(B)

28x28x1 images with 'zerocenter' norm...
@ conv -

2 conv 2-D Convolution 26(S) x 26(S) x 3(C) x 1(B)
Y 3 3x3x1 convolutions with stride [1 1] an...
¢ batchnorm 3 |batchnorm Batch Normalization | 26(S) x 26(S) x 3(C) x 1(B)
i Batch normalization with 3 channels
® relu 4 relu RelLU 26(S) x 26(S) x 3(C) x 1(B)
| RelU
® avgpool2d & avgpool2d 2-D Average Pooling [13(S) x 13(S) x 3(C) x 1(B)
P 2x2 average pooling with stride [2 2] an
Y
6 |flatten Flatten 507(C) x 1(B)
® flatten Flatten
! 7 |fc Fully Connected 10(C) x 1(B)
°c 10 fully connected layer
Y 8 softmax Softmax 10(C) x 1(B)
® soft softmax
soitmax

1 9 classoutput Classification Output |16(C) x 1(B)

crossentropyex with '0' and 9 other clas...
® classoutput

Fig. 9. Neural network architecture of the models trained on MNIST. The architecture
for the MedNIST models is created with the same parameters as the MNIST ones, but
the difference is the size of the input. MNIST input is 28 x 28, while MedNIST images
are 64 x 64, thus leading to small differences such as in the number of weights across
some of the layers.

16 D. Manzanas Lopez et al.

Table 1. MedNIST summary results

Model Accuracy (%) Verification Results
Regularization Initialization — Seed Robust Unkown Not Robust Avg. Time (s)
Dropout Glorot 0 99.27 276 24 0 28.87
Dropout Glorot 1 99.51 294 6 0 13.33
Dropout Glorot 2 99.52 285 15 0 11.93
Dropout Glorot 3 99.57 257 43 0 24.53
Dropout Glorot 4 99.63 286 14 0 17.36
Dropout He 0 99.65 257 43 0 43.81
Dropout He 1 99.60 286 14 0 22.23
Dropout He 2 99.57 203 96 0 28.40
Dropout He 3 99.73 235 65 0 42.11
Dropout He 4 99.70 196 104 0 43.95
Dropout Narrow-normal 0 99.55 300 0 0 10.49
Dropout Narrow-normal 1 99.50 294 6 0 11.72
Dropout Narrow-normal 2 99.61 293 7 0 14.85
Dropout Narrow-normal 3 99.55 296 4 0 5.17
Dropout Narrow-normal 4 99.66 300 0 0 9.35
Jacobian Glorot 0 99.79 288 12 0 19.55
Jacobian Glorot 1 99.79 291 9 0 20.80
Jacobian Glorot 2 99.80 289 11 0 19.97
Jacobian Glorot 3 99.80 289 11 0 19.98
Jacobian Glorot 4 99.78 292 8 0 21.76
Jacobian He 0 99.67 300 0 0 14.46
Jacobian He 1 99.75 298 2 0 14.72
Jacobian He 2 99.74 298 2 0 14.85
Jacobian He 3 99.74 298 2 0 14.81
Jacobian He 4 99.77 297 3 0 15.00
Jacobian Narrow-normal 0 99.69 300 0 0 10.32
Jacobian Narrow-normal 1 99.76 295 5 0 9.51
Jacobian Narrow-normal 2 99.77 300 0 0 10.33
Jacobian Narrow-normal 3 99.78 300 0 0 10.32
Jacobian Narrow-normal 4 99.78 300 0 0 10.31
Lo Glorot 0 99.31 239 61 0 38.67
Lo Glorot 1 99.51 292 8 0 18.25
L» Glorot 2 99.55 273 27 0 16.24
Lo Glorot 3 99.60 229 71 0 32.63
Lo Glorot 4 99.65 277 22 1 23.67
Lo He 0 99.69 260 39 1 45.94
Lo He 1 99.57 292 8 0 27.76
L2 He 2 99.58 196 104 0 39.09
Lo He 3 99.72 274 26 0 42.45
Lo He 4 99.72 188 112 0 44.44
Lo Narrow-normal 0 99.71 294 6 0 35.24
Lo Narrow-normal 1 99.53 292 8 0 10.52
Lo Narrow-normal 2 99.61 293 7 0 17.80
Lo Narrow-normal 3 99.55 298 2 0 9.21
Lo Narrow-normal 4 99.68 299 1 0 12.43

Analysis of Benchmark Generation for Neural Network Verification

Table 2. MNIST summary results

17

Model Accuracy (%) Verification Results
Regularization Initialization — Seed Robust Unkown Not Robust Avg. Time (s)
Dropout Glorot 0 95.61 300 0 0 4.15
Dropout Glorot 1 95.54 299 1 0 3.87
Dropout Glorot 2 93.43 293 7 0 0.32
Dropout Glorot 3 96.56 298 2 0 3.90
Dropout Glorot 4 94.10 298 2 0 0.41
Dropout He 0 92.79 297 3 0 4.04
Dropout He 1 93.62 299 1 0 0.32
Dropout He 2 93.82 299 1 0 0.26
Dropout He 3 95.97 299 1 0 4.19
Dropout He 4 95.81 299 0 1 4.05
Dropout Narrow-normal 0 95.92 300 0 0 0.52
Dropout Narrow-normal 1 93.31 299 1 0 0.32
Dropout Narrow-normal 2 94.67 299 1 0 0.38
Dropout Narrow-normal 3 96.03 300 0 0 4.53
Dropout Narrow-normal 4 95.84 300 0 0 0.48
Jacobian Glorot 0 96.37 299 1 0 4.65
Jacobian Glorot 1 96.86 298 2 0 6.11
Jacobian Glorot 2 97.03 299 1 0 6.32
Jacobian Glorot 3 97.16 296 4 0 5.58
Jacobian Glorot 4 97.08 299 1 0 5.36
Jacobian He 0 94.81 298 2 0 5.89
Jacobian He 1 96.04 297 3 0 3.93
Jacobian He 2 96.56 299 1 0 2.57
Jacobian He 3 96.97 299 1 0 1.75
Jacobian He 4 96.83 296 4 0 1.57
Jacobian Narrow-normal 0 96.50 300 0 0 6.08
Jacobian Narrow-normal 1 97.12 299 1 0 3.46
Jacobian Narrow-normal 2 96.97 300 0 0 2.53
Jacobian Narrow-normal 3 97.23 299 1 0 1.96
Jacobian Narrow-normal 4 97.20 299 1 0 1.98
Lo Glorot 0 96.11 300 0 0 3.64
Lo Glorot 1 95.63 296 4 0 7.00
L2 Glorot 2 94.49 293 7 0 0.30
L2 Glorot 3 96.29 295 5 0 7.08
Lo Glorot 4 94.49 299 1 0 0.42
Lo He 0 92.88 300 0 0 3.54
Lo He 1 93.73 295 5 0 3.60
L2 He 2 93.47 300 0 0 0.27
Lo He 3 96.03 296 4 0 3.72
Lo He 4 96.18 300 0 0 3.67
Lo Narrow-normal 0 96.20 299 1 0 3.72
Lo Narrow-normal 1 93.27 297 3 0 0.29
Lo Narrow-normal 2 94.97 299 1 0 3.72
Lo Narrow-normal 3 96.68 299 1 0 7.02
Lo Narrow-normal 4 95.72 298 2 0 3.70

	Empirical Analysis of Benchmark Generation for the Verification of Neural Network Image Classifiers

