
Benchmark: Remaining Useful Life Predictor for

Aircraft Equipment

Dmitrii Kirov⋆ and Simone Fulvio Rollini

Collins Aerospace

Abstract. We propose a predictive maintenance application as a bench-
mark problem for veri�cation of neural networks (VNN). It is a deep
learning based estimator of remaining useful life (RUL) of aircraft me-
chanical components, such as bearings. We implement the estimator as a
convolutional neural network. We then provide mathematical formaliza-
tions of its non-functional requirements, such as stability and monotonic-
ity, as properties. These properties can be used to assess the applicability
and the scalability of existing VNN tools.

URL. Benchmark materials, such as trained models (.onnx), examples of
properties (.vnnlib), test datasets, and property generation procedures,
are available at https://github.com/loonwerks/vnncomp2022.

1 Introduction

Remaining Useful Life (RUL) is a widely used metric in Prognostics and Health
Management (PHM) that manifests the remaining lifetime of a component (e.g.,
mechanical bearing, hydraulic pump, aircraft engine). RUL is used for condition-
based maintenance to support aircraft maintenance and �ight preparation. It
contributes to such tasks as augmented manual inspection of components and
scheduling of maintenance cycles for components, such as repair or replacement,
thus moving from preventive maintenance to predictive maintenance (do main-
tenance only when needed, based on component's current condition and esti-
mated future condition). This could allow to eliminate or to extend service op-
erations and inspection periods, optimize component servicing (e.g., lubricant
replacement), generate inspection and maintenance schedules, and obtain signif-
icant cost savings. RUL could also highlight areas for inspection during the next
planned maintenance, i.e., it could be used to move up a maintenance/inspection
action to prevent component failure. Finally, RUL function can also be used in
airborne (in-�ight) applications to dynamically inform pilots on the health state
of aircraft components during �ight.

Multivariate time series data is often used as RUL function input, for exam-
ple, measurements from a set of sensors monitoring the component state, taken
at several subsequent time steps (within a time window). Additional inputs may
include information about current �ight phase, mission and environment. Such

⋆ Corresponding author. Email: dmitrii.kirov@collins.com

https://github.com/loonwerks/vnncomp2022

2 D. Kirov and S. F. Rollini

highly multi-dimensional input space motivates the use of Machine Learning
(ML), more precisely, Deep Learning (DL) solutions with their capabilities of
performing automatic feature extraction from raw data. A number of solutions
based on Deep Neural Networks (DNNs) has emerged over recent years (e.g., [4],
[5], [6]).

An example of a DL-based RUL function is illustrated in Figure 1. The DL
model is a Convolutional Neural Network (CNN) that accepts as input a time
window of length 40, i.e., snapshots re�ecting the bearing state taken at 40
consecutive time steps. Each time step corresponds to 1 hour. Each snapshot
contains the following information:

� Seven Condition Indicators (CIs) that provide numerical information about
the bearing degradation, obtained from signal processing of measurements
of the vibration sensor attached to the bearing.

� Information about the current mission: current �ight regime, such as ascent,
cruise and descent, with corresponding nominal component load (bearing
RUL heavily depends on how the component is loaded), mission type (a set
of prede�ned mission patterns is available, e.g., long, short, mixed).

� Information about the current �ight environment (e.g., desert or non-desert).

CI values are computed by the Health Usage Monitoring System (HUMS),
while remaining inputs are provided by other avionics software. Snapshots are
provided to the input generator, where they are stored in memory and period-
ically shifted to yield a new consecutive time window. Output of the CNN is
a numerical non-negative value that represents the bearing RUL in hours. It is
provided to the end users, such as pilots and MRO (Maintenance, Repair and
Overhaul) via cockpit and ground station displays. Additional pre- and post-
processing of the CNN (e.g., input normalization) is not described due to space
limitations, details are available in [2].

2 Model Description

We propose a Convolutional Neural Network (CNN) model adapted from [1] as a
benchmark for the competition. It corresponds to the use case described above.
The CNN accepts as input a sequence (time window) of inputs. The inputs are
snapshots of condition indicators at a given time step, as well as other metrics.
Several convolutional layers are used to apply 1D convolutions to the inputs
along the time sequence direction. Extracted features are then merged together
via a fully connected layer. Dropout is used to mitigate over�tting. Activation
functions at all layers are Recti�ed Linear Units (ReLUs). The CNN performs a
regression task and outputs a numerical value, which is the RUL.

Several neural networks of di�erent complexity are provided:

� NN_rul_small_window20.onnx (number of ReLUs - 5500)
� NN_rul_full_window20.onnx (number of ReLUs - 10300)
� NN_rul_full_window40.onnx (number of ReLUs - 28300)

Benchmark: Remaining Useful Life 3

Fig. 1. Overview of the RUL estimator and its context.

All networks have been trained using the same dataset. The motivation for
providing several networks is the scalability study. The number of ReLUs is
di�erent for each network. This seems to be one of the key complexity metrics
for many VNN tools. Internally, networks have the same architecture/layers, but
some di�erent hyperparameters, such as the number of �lters in convolutional
layers (�small� networks have fewer �lters, �full� networks have more). Also, two
window sizes (20 and 40) have been used to generate the networks. While the
number of input features remains constant for all networks, manipulating the
window size allows to change the input space size (2x in the case of window sizes
used). Change in window size has a more signi�cant impact on the overall CNN
complexity.

3 Properties Description

We propose several classes of properties for the NN-based RUL estimation func-
tion. First two classes (stability and monotonicity) are local, i.e., de�ned around
a given point. To address the requirement for randomizing the inputs to VNN
tools, we provide a script with adjustable random seed that can generate these
properties around input points randomly picked from a test dataset. Properties
of the last class (�if-then�) are de�ned over input ranges. We have generated a
list of such properties and provide means for randomly selecting properties from
this list. Below, a short description of each property class is provided.

3.1 Stability Properties

ML model is stable if a small, bounded perturbation applied to its inputs in
normal operating conditions, i.e., when the inputs are inside the ML model's
operational design domain, does not cause a signi�cant deviation in its output.
Here, we focus on perturbations of condition indicator (CI) inputs. Correspond-
ing model stability requirement could be formulated as follows: "For a simul-
taneous perturbation of one or many CIs at a single time step (e.g., due to a
resonance frequency) within any time window, the output deviation of the RUL

4 D. Kirov and S. F. Rollini

estimator shall not exceed ϵ hours. The maximum admissible perturbation that
can occur to a CI input shall be equal to δ% of the average initial value of that
CI that corresponds to a fully healthy state of the bearing component". Then,
local stability properties that consider perturbations of one or more inputs can
be expressed in the �delta-epsilon� form:

∀x′ : ∀i ∈ S : |x
′t
i − xt

i| < δi|x∗
i | =⇒ |f(x′)− f(x)| < ϵ, (1)

where prime (′) denotes a perturbed item (i.e., x′ is the time window where one
or more elements have been perturbed; x

′t
i is a perturbed value of the CI i at

time step t; f(x′) is the ML model output computed from the perturbed input),
x∗
i represents the average initial value of the CI i, computed over all data, S is

a subset of the indexes corresponding to perturbed CIs, δi is the bound on the
input perturbation for a chosen CI i w.r.t. x∗

i (expressed as a percentage), and
ϵ is the maximum admissible output change.

The property requires that for any input perturbation applied to CIs from the
set S, bounded by a corresponding δi, the output must not deviate by more than
ϵ (L∞ norm is used to de�ne perturbations). Stability properties provided in this
benchmark di�er in the number of perturbed CIs and perturbation magnitudes.

3.2 Monotonicity Properties

Di�erently from stability requirements, the requirements on monotonicity of the
RUL estimator concern all steps of the input window, i.e., within the entire win-
dow. This is a realistic situation that may occur, for example, due to damage
or excessive load in the bearing that leads to an increased degradation rate.
Therefore, such changes in the CIs over the entire time window shall not be
identi�ed by data quality indicators in the HUMS as abnormal (unlike random
spikes/perturbations occurring at multiple time steps). Monotonicity require-
ments prescribe a non-increasing behavior of the estimator given a change in the
growth rate (higher or smaller) of one or more condition indicators.

Condition indicators are correlated with component degradation and failures.
Their values are expected tomonotonically increase during the use of the bearing
component, which re�ects its degradation. Consequently, the bearing RUL is
expected to monotonically decrease. Expected behavior of the RUL estimator
output is monotonic with respect to the inputs (CIs), i.e., when CIs increase the
RUL should decrease.

A growth rate increase of a CI by some percentage represents a di�erent
CI �trajectory� within the time window. Such new trajectory can be used as
an upper bound, while the original CI growth trend represents a lower bound.
The veri�cation strategy is to analyze all possible CI trajectories within these
bounds. Let xi be the vector of values of some CI i in the time window, xt

i

being the CI value at time step t. Local monotonicity property for this CI can
be formulated as

∀x′ : ∀t : xt
i ≤ x

′t
i ≤ xt

i + γ|xt
i − x1

i | =⇒ f(x′) ≤ f(x) (2)

Benchmark: Remaining Useful Life 5

where prime (′) denotes a modi�ed item (i.e., x′ is the time window, where one
or more CIs have modi�ed growth rates w.r.t. the original time window x; x

′t
i is a

modi�ed value of the CI i at time step t; f(x′) is the ML model output computed
from the modi�ed input), and γ (gamma) is the parameter that regulates the
CI slope change.

This property states that for any growing CI trajectory bounded by the orig-
inal CI trajectory (lower bound) and the one changed by a percentage γ (upper
bound), i.e., a steeper growth trend, the RUL shall be non-increasing w.r.t. the
original CI trajectory. The di�erence |xt

i−x1
i | represents an approximation of the

CI slope in the interval [1, t]. Further discussion on formalization of monotonicity
properties for the RUL is available in [2].

3.3 If-Then Properties

These properties are formulated as follows: IF the CNN inputs are in given
ranges, THEN the output (RUL) must be in an expected range. To generate
such properties, input ranges of some inputs have been broken down into sev-
eral sub-ranges (e.g., Low, Medium, High) with corresponding lower and upper
bounds. For each combination of these sub-ranges, an expected output range has
been estimated. Given these numerical bounds on input/output ranges, if-then
properties are straightforward to formulate.

NOTE. Given the number of combinations of input ranges, the number of if-
then properties can be extremely large. Therefore, for this benchmark we have
generated only a small subset of such properties with di�erent complexity, based
on size and the number of the ranges. The properties are randomly selected from
this subset. If-Then properties are currently the hardest to verify.

4 Concluding Remarks

We have proposed a benchmark problem for neural network veri�cation tools
� a convolutional neural network that predicts remaining useful life of a me-
chanical component. Property veri�cation an important capability in learning
assurance. European Union Aviation Safety Agency (EASA) in their AI Con-
cept Paper [3] emphasizes Formal Methods as anticipated means of compliance
for the veri�cation of ML models and their properties, such as robustness.

Acknowledgements The authors wish to thank Eric DeWind and David F.
Larsen for fruitful discussions and feedback about the RUL estimator and its
properties, as well as for providing mechanical bearing degradation datasets to
prepare this benchmark problem.

References

1. Remaining Useful Life Estimation using Convolutional Neural Network. [Online].
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/remaining-
useful-life-estimation-using-convolutional-neural-network.html

6 D. Kirov and S. F. Rollini

2. EASA and Collins Aerospace: Formal Methods use for Learning Assurance (For-
MuLA). Tech. rep. (April 2023)

3. European Union Aviation Safety Agency (EASA): Concept Paper: Guidance for
Level 1&2 Machine Learning Applications. Concept paper for consultation. (Febru-
ary 2023)

4. Li, X., Ding, Q., Sun, J.Q.: Remaining useful life estimation in prognostics using
deep convolution neural networks. Reliability Engineering & System Safety pp. 1�11
(2018)

5. Ren, L., Cui, J., Sun, Y., Cheng, X.: Multi-bearing remaining useful life collaborative
prediction: A deep learning approach. Journal of Manufacturing Systems 43, 248�
256 (2017)

6. Yuan, M., Wu, Y., Lin, L.: Fault diagnosis and remaining useful life estimation of
aero engine using lstm neural network. In: 2016 IEEE international conference on
aircraft utility systems (AUS). pp. 135�140. IEEE (2016)

	Benchmark: Remaining Useful Life Predictor for Aircraft Equipment

