
Formal Veri�cation of a Neural Network Based

Prognostics System for Aircraft Equipment

Dmitrii Kirov⋆, Simone Fulvio Rollini, Luigi Di Guglielmo, and Darren Cofer

Collins Aerospace

Abstract. We demonstrate the use of formal methods to verify prop-
erties of a deep convolutional neural network that estimates remaining
useful life of aircraft mechanical equipment. We provide mathematical
formalizations of requirements of the estimator, such as stability and
monotonicity, as properties. To e�ciently apply existing tools for veri-
�cation of neural networks, we reduce the veri�cation of global proper-
ties to a representative set of local properties de�ned for the points of
the test dataset. We encode these properties as linear constraints and
verify them using a state-of-the-art tool for neural network veri�cation.
To increase the completeness and the scalability of the analysis, we de-
velop a two-step veri�cation method involving abstract interpretation
and simulation-based falsi�cation. Numerical results con�rm the appli-
cability of the approach.

1 Introduction

The aviation industry is being increasingly driven towards the application of
Machine Learning (ML) in new products to assist human operators or implement
enhanced automation. Such products, in particular safety-critical ones, require
certi�cation and must provide a high level of trustworthiness and guarantees of
the absence of unintended behaviors.

Currently, the industry does not have a consensus on the assurance of ML-
enabled components because they are not fully amenable to current design as-
surance processes and standards. In particular, DO-178C provides guidance to
produce traditional (i.e., non-ML) software that performs the intended function
with a level of con�dence in safety that complies with airworthiness require-
ments [12]. The standard focuses on a process for software design that starts
from functional and non-functional requirements and transforms them into the
software code. This code is traced to and veri�ed against the requirements to en-
sure it is correct, i.e., it performs the intended function, and, more importantly,
does not expose behaviors that are unintended by the designer or unexpected
by operators.

ML development, instead, is data-driven. An ML model, such as a Neural
Network (NN), is trained through a learning procedure that starts from data, not
only from requirements. The use of traceability of the implementation back to

⋆ Corresponding author. Email: dmitrii.kirov@collins.com

2 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

training data as a means to minimize the risk that the ML component includes
unintended behaviors may not be possible. Additionally, the use of structural
coverage metrics may not be e�ective in identifying unintended functionalities
in ML models such as neural networks [14].

According to DO-333 [13], Formal Methods (FM) can be used as a source
of evidence for the satisfaction of veri�cation objectives when a formal model
of the software artifact can be established and properties they have to comply
with can be veri�ed via formal analysis. FM provide a comprehensive analysis
of a system over its entire input space, thus being able to show the absence of
unintended behaviors. New FM tools are being developed for ML-based systems,
in particular, for veri�cation of neural networks (VNN) [7, 16, 15]. Several case
studies on applying VNN tools have been published [9, 4]. Emerging certi�ca-
tion guidance created by the European Union Aviation Safety Agency (EASA)
explicitly mentions formal methods as promising means of compliance with a
number of key assurance objectives, such as stability1 and robustness of ML [6].
This is further elaborated in the recent technical report on the use of formal
methods for learning assurance [5].

In this paper, we demonstrate the application of formal methods on an ML-
enabled prognostics system for aircraft equipment to verify a function that pre-
dicts remaining useful life of mechanical components. The function is imple-
mented as a convolutional neural network. The main contribution of the paper
is to show the e�ectiveness of FM in identifying unintended behaviors of a real
NN application that may potentially have an impact on safety. We were able to
identify conditions, in which the requirements of the NN-based estimator, such
as stability and monotonicity, are violated.

We also propose an approach to overcome scalability and applicability bar-
riers of existing VNN tools for verifying global properties by reducing them to
local properties de�ned for a representative set of input points. We discuss a
necessary condition on data quality (completeness and representativeness) that
enables such reduction. To further mitigate the scalability issue, we develop a
hybrid, two-step veri�cation method that involves abstract interpretation and
simulation-based falsi�cation.

2 Remaining Useful Life Estimator

Remaining Useful Life (RUL) is a metric that manifests the remaining lifetime
of a component. In aviation RUL is used in Prognostics and Health Management
(PHM) applications, such as condition-based maintenance, to support aircraft
maintenance and �ight preparation. RUL estimation could contribute to aug-
mented manual inspection of components and scheduling of maintenance cycles.
RUL could also highlight areas for inspection during the next planned mainte-
nance, i.e., it could be used to move up (prioritize) a maintenance/inspection
action to prevent component failure.

1 This is a domain-speci�c concept, di�erent e.g. from the notion of stability in control
theory; see Section 3.1 for details.

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 3

Existing RUL calculation procedures often use physics-based degradation
models [10]. Such models typically have high accuracy, but require extensive prior
knowledge about the underlying physical system, which is often not available in
practice. Similarity-based methods [2] are less complex to develop and deploy,
but their main disadvantage is low accuracy. In the recent decade, the focus
has been gradually shifting towards ML-based approaches [3, 11]. In particular,
deep neural networks are capable of using raw sensor measurements directly as
inputs, and leverage their automatic feature extraction capabilities to discover
relationships between the inputs and their impact on the RUL, which may be
unknown to the experts [8]. Therefore, they require less domain expertise and
prior knowledge of the behavior of the equipment that is being monitored.

The RUL estimator examined in this case study is used in an on-ground
maintenance application to provide information about the current state of a me-
chanical bearing component installed in the drivetrain assembly of a rotorcraft.
End users are pilots, as well as Maintenance, Repair and Overhaul (MRO) teams.
Predicted RUL is used during pre-�ight checks to detect possible problems with
the bearing and, if present, to prioritize certain maintenance/inspection actions.

The interface of the RUL estimator is illustrated on Fig. 1. The ML model
is a Convolutional Neural Network (CNN) that accepts as input a time window
of length 40, i.e., snapshots re�ecting the bearing state taken at 40 consecutive
time steps. Each time step corresponds to 1 hour. Each snapshot contains the
following information:

� Seven Condition Indicators (CIs) that provide numerical information about
the bearing degradation, obtained from signal processing of measurements
of the vibration sensor attached to the bearing.

� Information about the current mission: current �ight regime, such as ascent,
cruise and descent, with corresponding nominal component load (bearing
RUL heavily depends on how the component is loaded), mission type (a set
of prede�ned mission patterns is available, e.g., long, short, mixed).

� Information about the current �ight environment (e.g., desert or non-desert).

Fig. 1. Overview of the RUL estimator and its context.

4 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

CI values are computed by the Health Usage Monitoring System (HUMS),
while remaining inputs are provided by other avionics software. Snapshots are
provided to the input generator, where they are stored in memory and period-
ically shifted to yield a new consecutive time window. Output of the CNN is
a numerical non-negative value that represents the bearing RUL in hours. It is
provided to the end users (pilots, MRO) via cockpit and ground station displays.
Additional pre- and post-processing of the CNN (e.g., input normalization) is
not described due to space limitations, details are available in [5].

The NN architecture of the RUL estimator is adapted from [1]. It includes
several convolutional layers that apply 1D convolutions along the time sequence
direction of the input time window, thus extracting trends in separate features.
These trends are merged together via a fully connected layer. Activation func-
tions at all layers are Recti�ed Linear Units (ReLUs). The total number of layers
is 12 and the number of learnable parameters is on the order of 100K. The CNN
performs a regression task.

Requirements We provide a selected list of requirements of the RUL estima-
tor in Table 1. They include stability and monotonicity of the estimator. These
requirements shall be met within the entire Operational Design Domain (ODD)
of the RUL estimator, i.e., the range of inputs for which the estimator is guaran-
teed to operate as intended. Violation of the requirements may have an impact
on the safety, for example, if the NN overestimates the RUL. This is particularly
relevant to the so-called critical range de�ned as the last 100h of the bearing
RUL, i.e., when the bearing may soon develop a failure. Overestimating the RUL
in the critical range may lead to missing a critical component inspection before
proceeding with the �ight mission. Requirements from Table 1 can be formalized
as properties, as will be shown in Section 3.

3 Property Formalization

In the remainder of this paper, the following notation is used. Bold font (e.g.,
x) is used to denote a vector or a matrix, depending on the context, while
normal font (e.g., x) denotes a scalar. We recall that a single input point for the
RUL estimator function corresponds to an L×n time window with a prede�ned
number of time steps L and n features (1 ≤ i ≤ n). Formally, an input point is a
matrix x = [x1, . . . ,xn], where each column i contains values xt

i of some input
feature i at consecutive time steps t (1 ≤ t ≤ L), i.e., a vector xi = [x1

i , . . . , x
L
i]

T .
Also, in the following, when considering two input points x and x′, some

step t∗, and a subset S of indexes of features, the values of the features not
explicitly mentioned (i.e., their indexes not belonging to S) are assumed equal,
i.e., xt

j = x
′t
j for j /∈ S, and the values of the features in S are assumed equal at

steps di�erent from t∗, i.e., xt
j = x

′t
j for j ∈ S, t ̸= t∗.

The scope of properties for the RUL estimator neural network can be either
local or global. A local property is de�ned for a given input point x ∈ X or a

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 5

Table 1. Selected requirements for the RUL estimator.

ID Requirement

RUL-ML-Stab-1 The maximum admissible perturbation that can occur to a condition
indicator input shall be equal to 40% of the average initial value of that
CI that corresponds to a fully healthy state of the bearing component.

RUL-ML-Stab-2 For a perturbation of a single CI at a single time step within any input
time window, the output deviation of the RUL estimator shall not ex-
ceed 10 hours. The max perturbation for which the requirement must
hold corresponds to RUL-ML-Stab-1. Requirement applies to each CI.

RUL-ML-Stab-3 For a simultaneous perturbation of all CIs at a single time step (e.g., due
to a resonance frequency) within any time window, the output deviation
of the estimator shall not exceed 10 hours. The max perturbation for
which the requirement must hold corresponds to RUL-ML-Stab-1.

RUL-ML-Mon-1 For an increased growth rate of a single CI (may occur, for exam-
ple, when a particular failure occurs in the bearing, which increases its
degradation) within any input time window, the estimator shall output
a non-increasing value of the RUL. Requirement applies to each CI.

RUL-ML-Mon-2 For an increased growth rate of all CIs (may occur, for example, due to
simultaneous development of a number of failures or due to excessive
load) within any input time window, the estimator shall output a non-
increasing value of the RUL.

subset of points X ′ ⊆ X of the input space X. That is, local properties must
hold for some speci�c inputs. Such properties are accepted by the majority of
existing VNN tools. A global property is de�ned over the entire input space X
of the NN. Global properties must hold for all inputs.

3.1 Stability Properties

The ML model is stable if a small, bounded perturbation applied to its inputs
in normal operating conditions, i.e., when the inputs are inside its operational
design domain, does not cause a signi�cant deviation in its output [5]. Condition
indicators are key input features of the RUL estimator for which undetected
perturbations may occur during operation. For example, a spike change of a sin-
gle CI may occur at some time step due to sensor noise. Similarly, a resonance
frequency in the bearing may result in simultaneous deviation of multiple CIs
(also at a single time step). Random CI perturbations at multiple, especially
consecutive, time steps shall be detected by data quality monitors within the
HUMS before they could enter the neural network, therefore, such cases are con-
sidered unrealistic. Similarly, spikes in CIs that exceed the admissible threshold
prescribed by requirement RUL-ML-Stab-1 shall be detected by the HUMS.

Stability to a single CI perturbation at a single time step. Let xi be
the vector of values of some CI i in the time window, xt

i being the CI value at
time step t. The formulation of a stability property for a single CI is:

6 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

∀x′ : |x
′t
i − xt

i| < δ|x∗
i | → |f(x′)− f(x)| < ϵ, (1)

where prime (′) denotes a perturbed item, i.e., x′ is the time window, where
one or more elements have been perturbed, x

′t
i is a value of the i-th CI (per-

turbed) at time step t, and f(x′) is the ML model output computed from the
perturbed input, x∗

i represents the average initial value of the i-th CI, which can
be computed by averaging initial CI values over all degradation scenarios in the
available dataset, δ is the bound on the input perturbation w.r.t. x∗

i (expressed
as a percentage), and ϵ is the maximum admissible output change.

Stability to multiple CI perturbations at a single time step. In case of
perturbations over multiple CIs, the formulation of the stability property is:

∀x′ : ∀i ∈ S : |x
′t
i − xt

i| < δi|x∗
i | → |f(x′)− f(x)| < ϵ, (2)

where S is a subset of the indexes corresponding to perturbed CIs, x∗
i , δ and

ϵ are as above (the only di�erence is that for each perturbed CI with index i
a di�erent bound δi can be speci�ed), and prime (′) denotes a perturbed time
window (x′) or value (x

′t
i).

3.2 Monotonicity Properties

Condition indicators and their growth rate are correlated with component degra-
dation and failures. Di�erently from stability, requirements on monotonicity of
the RUL estimator consider simultaneous systematic modi�cations of CIs at all
time steps of the input window. This is a realistic situation that may occur,
for example, due to damage or excessive load in the bearing that leads to an
increased degradation rate. Therefore, such changes in the CIs over the entire
time window shall not be identi�ed by data quality indicators in the HUMS as
abnormal (unlike random spikes/perturbations occurring at multiple time steps).

Expected behavior of the RUL estimator output is to be monotonic with
respect to CIs, i.e., when they increase, the RUL should decrease. Faster bearing
degradation is manifested by the CIs (one or many) growing faster. Monotonicity
requirements in Table 1 prescribe a non-increasing output of the RUL estimator
given an increase in the growth rate of one or more condition indicators.

Requirements RUL-ML-Mon-1 and RUL-ML-Mon-2 do not prescribe any
concrete upper bound of the CI growth rate within any time window. In general,
a growth rate increase of a CI by some percentage represents a di�erent CI �tra-
jectory� within the time window, as exempli�ed in Fig. 2a. Such new trajectory
can be used as an upper bound, while the original CI growth trend represents
a lower bound. The veri�cation strategy would be to analyze all CI trajecto-
ries contained within these bounds, thus exhaustively verifying all possible CI
changes within the interval and their e�ect on the monotonicity of the estimator.

A CI slope change a�ects all CI values in the time window. In particular, the
values closer to the end of the window have a larger change. As a result, over-
all intervals to be analyzed by formal veri�cation would become substantially

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 7

large, even if the upper bound (increased CI slope) is small. This may lead to
scalability issues. Additionally, such formulation is not able to discard �oscillat-
ing� CI trajectories, i.e., highly non-monotonic2 ones, since it only de�nes lower
and upper bounds for CI values at each time step, but does not prescribe any
interdependency between consecutive values. See example in Figure 2a (black
line). Such CI trajectories may represent excessive noise but in general are not
realistic. At the same time, they may invalidate a large number of properties,
hampering the e�ectiveness of the veri�cation. Hence, the analysis space has to
be further restricted.

A compromise solution that enables a tradeo� between input space coverage,
scalability, and e�ectiveness of the veri�cation is presented below. It consists in
extending the CI growth rate change with the possibility of a constrained �uc-

tuation: this guarantees that, where the original CI trajectory is locally mono-
tonically increasing, any trajectory in the de�ned interval is also monotonically
increasing; where the original trajectory is not locally increasing, any derived
trajectory is at least not �less monotonic� (see example in Figure 2b). Such for-
mulation allows local oscillations in the CIs, for example, due to noise. Given
a CI i, step t, constant γ, let ut

i = xt
i + γ|xt

i − x1
i | and vti = xt

i − γ|xt
i − x1

i |.
Monotonicity properties with constrained �uctuation for a single CI growth rate
change can be expressed as:

∀x′ : ∀t : ut
i ≤ x

′t
i ≤ max(ut

i, u
t+1
i) → f(x′) ≤ f(x) (3a)

∀x′ : ∀t : vti ≤ x
′t
i ≤ max(vti , v

t+1
i) → f(x′) ≥ f(x) (3b)

Consider the Equation 3a. The di�erence |xt
i − x1

i | represents an approximation
of the CI slope in the interval [1, t]. The given CI i is allowed to �uctuate, at
step t, between ut

i = xt
i+γ|xt

i−x1
i | and ut+1

i = xt+1
i +γ|xt+1

i −x1
i |, if u

t+1
i ≥ ut

i,
otherwise it is set to ut

i. The max function captures this constrained �uctuation.
Accordingly, at step t+ 1, x′

i either belongs to the interval [ut+1
i , ut+2

i], or is set
to ut+1

i , if such interval is empty. This procedure guarantees that, if xt
i ≤ xt+1

i ,

then x
′t
i ≤ x

′t+1
i , leading to a derived trajectory that is not �less monotonic� than

the original one. Similarly, Equation 3b captures the constrained CI �uctuation
in the opposite direction, i.e., it prescribes a non-decreasing RUL in cases of a
�slower� CI growth rate. Properties 3a-3b can be generalized to the case that
captures simultaneous growth rate change in all CIs. These formulations are
available in [5].

4 Veri�cation Methods

We have implemented a formal veri�cation framework to support the analysis of
local stability and local monotonicity properties. The framework carries out all

2 In this case, the notion of monotonicity applies to a CI in a time window, intended
as a sequence of values, rather than to the RUL w.r.t. one of the CIs.

8 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

Fig. 2. Monotonicity analysis: (a) Entire space of possible CI trajectories bounded by
the original CI trajectory at a given input point and a modi�ed trajectory with an
increased growth rate; (b) Subspace of CI trajectories with constrained �uctuation.

property formalization activities, i.e., it automatically creates property objects
from numerical values provided in the requirements. To verify the properties,
it then invokes the FM tool NNV [15] that is based on abstract interpretation.
The tool computes the set of possible outputs for a set of inputs speci�ed by the
property, and then performs a geometrical check: for the property to be valid,
the output set of the NN must not intersect with the region of the output space
(halfspace) that is associated with the negation of this property (i.e., the �unsafe�
area). Otherwise, an intersection manifests a property violation. The following
veri�cation methods are provided by the VNN tool:

� Exact method. This method performs exact reachability analysis for the
neural network, i.e., it precisely computes the set of possible outputs (output
reachable set) based on the provided input set.

� Approximate method. This method computes a conservative approxima-
tion of possible NN outputs via abstract interpretation. This enables faster
analysis time. If the region associated with a property negation (i.e., un-
safe region) does not intersect with the output set over-approximation, the
property can be concluded valid. However, the analysis may not be able to
disprove the property, that is, if an intersection with the negated property is
found, the related counterexample may be spurious. To avoid raising a false
alarm, in such situations the tool returns an �unknown� answer.

Despite being sound and complete, the exact veri�cation method may face
scalability issues when the complexity of the NN (e.g., number of layers, param-
eters) and/or the property (e.g., size of the input space to be considered) is high.
On the other hand, the approximate method can only identify valid properties,
but not invalid ones, always returning �unknown� in the latter case. In this pa-
per, we propose a tradeo� between completeness and execution time. The new
approach, called the two-step method, combines approximate veri�cation de-
scribed above, and a simulation-based falsi�cation method. The latter randomly
generates a number of inputs in the neighborhood of the given point for which
the local property is de�ned, and performs NN inference to check the outputs
against the property. If a violation is observed then the property is falsi�ed and

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 9

can be declared invalid. However, contrary to the above methods, simulation
alone cannot prove the property, it may only disprove it.

The two-step method is illustrated in Fig. 3. First, the property is veri�ed
with the approximate method and, if it is proven valid, the method terminates.
Otherwise, if �unknown� is returned by the solver, the simulation-based method
is invoked in an attempt to disprove the property by �nding a counterexam-
ple (CEX) among a con�gurable number of randomly generated inputs in the
neighborhood of the original point. If no CEX is found, the method returns
�unknown�. Hence, the method is still incomplete, but it aims at increasing the
thoroughness of the analysis w.r.t. using only the approximate method based
on abstract interpretation. Informally, it increases the chances of providing a
de�nitive answer for each property.

Fig. 3. Two-step veri�cation method: abstract interpretation (�rst step) and
simulation-based falsi�cation (second step).

5 Veri�cation Results

All experiments were run on a server with ∼64GB of RAM and a ∼2095Mhz
Intel Xeon processor, in a Linux Ubuntu environment.

5.1 Reduction of Global Properties to Local Properties

Properties in Section 3 have been de�ned for some input time window x ∈
X, X being the input space of the neural network (more precisely, its ODD).
They can be imposed on the entire space X, making them global properties.
Formal guarantees on the validity of these global properties would be desirable to
demonstrate that the requirements are met. However, such analysis is currently
intractable with existing VNN tools.

To mitigate the tool scalability problem, we propose an approximation of
global property veri�cation by reducing it to verifying local properties de�ned
for a set of input points. The result of such reduction could be acceptable if
altogether selected input points and corresponding local properties are repre-
sentative of the RUL estimator ODD and cover it su�ciently. In other words, a
discretization of the ODD could be performed with a representative set of input

10 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

points that approximate all possible input points within the ODD. Consequently,
analysis of local properties for these points would approximate the veri�cation
of the corresponding global property.

According to data quality requirements prescribed by existing ML certi�ca-
tion guidance for aviation applications [6], each dataset (i.e., training, validation,
test) must be complete and representative with respect to the ODD. Statistical
methods could be applied to assess these characteristics of the data [5]. Tradi-
tionally, testing of ML models is performed on a test (holdout) dataset. This
dataset could be used as an approximation of the ODD, provided that its com-
pleteness and representativeness are demonstrated3.

In this case study, we used the RUL estimator test dataset to perform the
veri�cation. Its quality has been analyzed and improved, as described in [5]. The
test dataset includes 7493 time windows. They have been obtained by (i) con-
catenating degradation sequences (each degradation sequence is a multivariate
time series that captures run-to-failure conditions of the bearing) in an arbitrary
order and (ii) �attening this concatenation into a numbered list of time windows.
That is, the inputs are temporally adjacent and consecutive, except that there
is a discontinuity between the degradation sequences (last time window of the
previous degradation sequence and �rst time window of the next sequence are
not temporally adjacent). There is no speci�c ordering of degradation sequences
in the test dataset, they are independent from each other.

5.2 Stability Veri�cation

Several veri�cation phases have been conducted for stability properties. First, the
exact veri�cation method was tested in the presence of a single CI perturbation
at a single time step, as formulated in Equation 1. The encoding produced 52451
local stability properties. The framework was able to verify all properties with
an average execution time of 0.36s; 100% of the properties were proven valid.
Since all properties could be veri�ed with a sound and complete method, it was
considered redundant to test other veri�cation methods in this phase.

Next, the exact method was employed to verify properties involving simul-
taneous perturbations of all CIs at a single time step, according to Equation 2.
The encoding produced 7493 local properties, one per input time window. The
method could not verify any property within a time limit of 3h, sometimes due
to failures caused by out-of-memory events.

To mitigate the scalability problem, two-step veri�cation method was ap-
plied to the same properties involving all CIs. The adoption of an approximate
method allowed to overcome the di�culties experienced with the exact method:
all properties were veri�ed, 98.3% of them were proven valid, with an average
veri�cation time of 0.63s. Invalidity was detected, and an unknown answer was
given, respectively, in 0.08% and 1.58% of the cases.

3 A more detailed investigation of the reduction of global to local properties would
include producing empirical evidence of the feasibility of the approach, as well as
deriving analytical bounds on the approximation. This is subject of future work.

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 11

Results are summarized in Table 2, showing the total number of properties
veri�ed (or intended to be veri�ed) at each veri�cation phase, and a breakdown
into amounts of valid, invalid, and unknown answers computed by the veri�cation
framework. Finally, average veri�cation time per property is provided (avgTime)
� cumulative, as well as average times for valid, invalid, and unknown properties
(in brackets). Total veri�cation time (totTime) is also provided in the last col-
umn. It can be noted that the use of the exact method to verify properties with
perturbations in all CIs is redundant and in fact provided no results, however,
it is also shown here to demonstrate the scalability issue. Since with the use of
the two-step method invalid and unknown (unproven) properties are present,
the table additionally speci�es the results for the critical range of the RUL to
see whether some of these properties could have potential impact on safety.

Table 2. Veri�cation results for local stability properties of the RUL estimator.

Setting # prop # valid # inv # unknown avgTime (s) totTime (s)

Single CI, 52451 52451 0 0 0.3255 17074
exact method (0.3255, -, -)

All CIs, 7493 - - - Timeout Timeout
exact method (-, -, -)

All CIs, 7493 7369 6 118 0.6347 4756
2-step method (0.5, 6.4, 4.1)

All CIs, 1414 1414 0 0 0.3313 468.45
2-step method
critical range

Fig. 4 shows where RUL estimator inputs that resulted in invalid and un-
known stability properties are located within their degradation sequences. Re-
call that each property is associated with a time window, and that within each
degradation sequence in the test dataset local stability properties correspond
to temporally adjacent and consecutive time windows. Black solid vertical bars
in Fig. 4 mark the ends of the degradation sequences: a vertical bar represents
the end of a previous sequence, i.e., the failure of the bearing, and the beginning
of a next one (full healthy state of the bearing). Red and blue dotted vertical
bars identify, respectively, invalid and unknown properties.

It can be observed that invalid and unknown properties tend to be con-
centrated within the �rst half of the sequence time frame, i.e., the estimator
behavior may be problematic at the very beginning of a degradation sequence.
Noteworthy, there are no such properties in the critical range (last 100h of re-
maining lifetime of the bearing), where all properties are valid within the entire
test dataset. This increases con�dence in the correctness of the behavior of the
RUL estimator with respect to safety considerations. Overall, it can be concluded
that requirement RUL-ML-Stab-2 for stability to single CI perturbations is met,
while RUL-ML-Stab-3 is not met.

12 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

Fig. 4. Location of inputs related to invalid (top) and unknown (bottom) properties
for all sequences in the test dataset.

Counterexample. It is important to analyze counterexamples to gain insights
on the possible reasons of property violation. The veri�cation framework permits
visual analysis of the counterexamples. An example is illustrated in Fig. 5 for
a stability property to multiple (all) CI perturbations at a single time step.
It comes from the simulation-based falsi�cation (second step of the two-step
method), i.e., it is the result of applying bounded random perturbations on
selected CIs corresponding to the property.

Fig. 5. Visualization of a counterexample to a local stability property.

First seven sub-charts in Fig. 5 show the CIs trends (in blue) over the input
window. A perturbation to each of the CIs at step 20 is shown in red color.
Black horizontal bars denote the perturbation bounds for each CI (±δ). The last
sub-chart on the right shows the original RUL estimator output (in blue) and
the output deviation (red cross) due to input perturbations; the output exceeds
the admissible deviation ϵ = 10h. Several observations can be made:

� Each CI received a positive perturbation, i.e., a spike towards higher values
that are associated with higher bearing degradation.

� The last three CIs (ShaftOrder 1-3) got perturbed more than others. The
perturbation applied to these CIs is almost the maximum admissible one

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 13

(δ). The shaft is a cross-component for the bearing, so if the shaft health
decreased substantially, as manifested by the ShaftOrder CIs, it would have a
multiplicative e�ect on the degradation coe�cient, which could signi�cantly
decrease the RUL. However, a spike increase in the shaft CIs at a single time
step should not lead to such decrease as resulted from the CEX in Fig. 5.

5.3 Monotonicity Veri�cation

Analysis has been performed on monotonicity properties with constrained �uc-
tuation de�ned by Equations 3a-3b - both for each single CI slope change (and
corresponding constrained �uctuation interval of CI trajectories) and for all CI
slopes changed simultaneously, with γ varying from 10% to 50%. Again, the ex-
act veri�cation method did not provide any answer in a 3h timeout, therefore,
the two-step method was applied.

Table 3 provides the results for growth rate change in a single CI. It reports
numbers of valid, invalid and unknown properties, average veri�cation times per
property, and total veri�cation times, for di�erent CI growth trajectories (slopes)
regulated by the γ parameter. Statistics for properties corresponding to input
points in the critical range of the RUL (last 100h) are shown separately in the
same table. Similarly, results for properties involving simultaneous growth rate
change in all CIs are provided in Table 4. Following observations can be made:

� The estimator is more likely to correctly react, i.e., exhibit monotonic be-
havior, to simultaneous changes in all CIs rather than in an individual CI.
Considering increased growth rates for individual CI and all CIs, the total
percentage of valid properties in the former case varies between 79% and 84%
(depending on γ), while for the latter 98%-99.5% of properties are valid. This
is because multiple increasing CI trends in the input window provide more
�evidence� to the estimator that the bearing is degrading.

� The estimator is more monotonic when the CI growth rate change is large:
γ =50% has much fewer property violations compared to γ =10%. Larger
changes make it more evident to the estimator that the degradation is hap-
pening. This holds for both changes in single CI and in all CIs.

� For single CI slope changes, property violations, as well as �unknown� an-
swers, are uniformly distributed across the RUL range. For changes in all
CIs, violations and �unknowns� mainly belong to the critical range of RUL.

� Average solving time for veri�cation of a single property is a fraction of a
second for individual CIs and around 1 second for all CIs. Veri�cation of
the latter is more complex since more inputs are considered variable (as
intervals) rather than �xed: for a time window length of 40, individual CI
properties result in 40 intervals to be de�ned (one per time step for a single
CI), while 280 intervals (40 × 7 CIs) must be considered for all CI properties.

Same as for stability properties, monotonicity veri�cation can generate coun-
terexamples for invalid properties. Such CEX can be fed back to the designer
for further analysis. An example is shown in Fig. 6 for one of the input windows

14 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

in the critical range of the RUL. Here, the growth rate of all seven CIs has been
increased by γ = 10%. Original CI trajectories are shown in blue and modi-
�ed ones in red. The RUL value (red cross on the rightmost plot) is larger than
the original one (blue horizontal line), therefore, the property is violated. In fact,
even though the new CI trajectory with higher CI growth rate has values strictly
larger than the original one, the estimator fails to predict a decreasing RUL. One
can observe non-monotonicity in some of the CIs (e.g., BallEnergy and CageEn-
ergy; they are present even in the original trajectories). These �uctuations may
be due to �ight regime or mission change within the time window.

Fig. 6. Counterexample for a monotonicity property with a 10% growth rate increase
for all CIs.

Table 3. Monotonicity property veri�cation results with two-step method (single CI,
increased CI growth rates).

range γ # prop # valid # invalid # unknown avgTime (s) totTime (s)

full

10%

52451

41572 7797 3082 0.1716 8999
20% 42875 7624 1952 0.1660 8706
30% 43513 7568 1370 0.1591 8346
40% 43869 7543 1039 0.1632 8563
50% 44108 7524 819 0.1608 8436

critical

10%

9898

8061 1455 382 0.1620 1604
20% 8248 1446 204 0.1568 1552
30% 8316 1445 137 0.1498 1483
40% 8359 1434 105 0.1533 1517
50% 8387 1426 85 0.1515 1500

Overall, veri�cation of local monotonicity properties de�ned from require-
ments RUL-ML-Mon-1 and RUL-ML-Mon-2 reveals that the current version of
the ML model does not meet neither of the two requirements. This is due to:

� A signi�cant number of property violations occurs on relatively small changes
of the CI growth rate (e.g., γ =10%) � 20% for all single-CI properties, with

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 15

Table 4. Monotonicity property veri�cation results with two-step method (all CIs,
increased CI growth rates).

range γ # prop # valid # invalid # unknown avgTime (s) totTime (s)

full

10%

7493

7364 59 70 1.049 7858
20% 7458 26 9 1.075 8052
30% 7457 25 11 1.068 8005
40% 7458 24 11 1.104 8274
50% 7458 22 13 1.080 8098

critical

10%

1414

1373 26 15 0.984 1392
20% 1379 26 9 1.010 1429
30% 1378 25 11 1.004 1419
40% 1379 24 11 1.027 1452
50% 1379 22 13 1.008 1426

the majority of invalid properties belonging to the changes in ShaftOrder1
and ShaftOrder3. Additionally, there is a large number of unknown proper-
ties, also in the critical RUL range. This shows that the estimator is often
not capable of associating growing CI trends with component degradation.

� Despite the number of invalid properties for growth rate changes in all CIs
(RUL-ML-Mon-2) being small (around 0.3%), all violations belong to the
critical region of the RUL.

Limited non-monotonicity. Additional analysis has been carried out to un-
derstand to which extent monotonicity properties are not satis�ed, e.g., if such
increase of the RUL value can be bounded from above. For this purpose, the
notion of limited non-monotonicity has been introduced and encoded. For prop-
erties with single CI growth rate increase (Eq. 3) this is formalized as follows:

∀x′ : ∀t : ut
i ≤ x

′t
i ≤ max(ut

i, u
t+1
i) → f(x′) ≤ f(x) + ϵ (4)

for step t, constant γ, constant ϵ = 10h (provided by the domain expert), ut+1
i =

xt+1
i + γ|xt+1

i − x1
i |, S being the subset of indexes i of features corresponding

to CIs. Equation 4 imposes that a constrained �uctuation in the CIs yields an
increase of the estimated RUL that is limited by a constant number of hours ϵ.

Analysis of the relaxed property allowing limited non-monotonicity has been
executed only for properties reported as invalid or unknown during veri�ca-
tion activities presented above. Numerical results are available in [5], pages 87-
88. Results for single CI have shown that the majority of the previously in-
valid/unknown properties become valid, i.e., the violations of the original prop-
erties are mostly bounded by ϵ = 10h. A small number of properties remained
invalid. The analysis showed that they belong to a group of adjacent time win-
dows in a single degradation sequence. Violations may be related to �uctuating
behavior of the CI within the corresponding windows, possibly due to errors in
simulations that produced synthetic data for the test dataset.

16 D. Kirov, S. F. Rollini, L. Di Guglielmo, and D. Cofer.

6 Conclusion and Future Work

We applied formal methods on an industrial case study to verify properties of
a deep learning based estimator of remaining useful life. We provided mathe-
matical formalizations of stability and monotonicity properties of neural net-
works. To overcome scalability limitations of VNN tools, we proposed to reduce
the veri�cation of global properties to a representative set of local properties,
and also implemented a two-step veri�cation method involving abstract inter-
pretation and simulation-based falsi�cation. Numerical results demonstrate the
applicability of formal methods to verify a large number of local properties in
reasonable time. Future work shall focus on further improving both the com-
pleteness of the analysis and its scalability, derivation of an error bound for the
reduction of global properties with local properties, as well as on the application
of FM on higher complexity neural networks, such as perception systems.

Acknowledgements The authors wish to thank Eric DeWind and David F.
Larsen for fruitful discussions and feedback about the RUL estimator, as well
as for providing mechanical bearing degradation datasets to train and test the
neural network.

References

1. Remaining Useful Life Estimation using Convolutional Neural Network. [Online].
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/remaining-
useful-life-estimation-using-convolutional-neural-network.html

2. Similarity-Based Remaining Useful Life Estimation. [Online].
https://www.mathworks.com/help/predmaint/ug/similarity-based-remaining-
useful-life-estimation.html

3. Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S.: Remaining useful life
estimation based on nonlinear feature reduction and support vector regression.
Engineering Applications of Arti�cial Intelligence 26, 1751�1760 (2013)

4. Damour, M., De Grancey, F., Gabreau, C., Gau�riau, A., Ginestet, J.B., Hervieu,
A., Huraux, T., Pagetti, C., Ponsolle, L., Clavière, A.: Towards certi�cation of a
reduced footprint acas-xu system: A hybrid ml-based solution. In: Computer Safety,
Reliability, and Security: 40th International Conference, SAFECOMP 2021, York,
UK, September 8�10, 2021, Proceedings 40. pp. 34�48. Springer (2021)

5. EASA and Collins Aerospace: Formal Methods use for Learning Assurance (For-
MuLA). Tech. rep. (April 2023)

6. European Union Aviation Safety Agency (EASA): Concept Paper: Guidance for
Level 1&2 Machine Learning Applications. Concept paper for consultation. (Febru-
ary 2023)

7. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zelji¢, A., et al.: The Marabou framework for veri�cation
and analysis of deep neural networks. In: Computer Aided Veri�cation: 31st In-
ternational Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I 31. pp. 443�452. Springer (2019)

Formal Veri�cation of NN-Based Prognostics System for Aircraft Equipment 17

8. Li, X., Ding, Q., Sun, J.Q.: Remaining useful life estimation in prognostics using
deep convolution neural networks. Reliability Engineering & System Safety pp.
1�11 (2018)

9. Liu, C., Cofer, D., Osipychev, D.: Verifying an Aircraft Collision Avoidance Neural
Network with Marabou. In: Proceeding of NASA Formal Methods Symposium
(2023)

10. Pecht, M., Gu, J.: Physics-of-failure-based prognostics for electronic products.
IEEE Transactions of Measurement and Control 31, 309�322 (2009)

11. Ren, L., Cui, J., Sun, Y., Cheng, X.: Multi-bearing remaining useful life collabora-
tive prediction: A deep learning approach. Journal of Manufacturing Systems 43,
248�256 (2017)

12. RTCA/DO-178C: Software Considerations in Airborne Systems and Equipment
Certi�cation (2011)

13. RTCA/DO-333: Formal Methods Supplement to DO-178C and DO-278A (2011)
14. SAE G-34 Arti�cial Intelligence in Aviation: Arti�cial Intelligence in Aeronautical

Systems: Statement of Concerns (2021)
15. Tran, H.D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W.,

Bak, S., Johnson, T.T.: NNV: the neural network veri�cation tool for deep neural
networks and learning-enabled cyber-physical systems. In: Computer Aided Veri-
�cation: 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21�24, 2020, Proceedings, Part I. pp. 3�17. Springer (2020)

16. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: E�cient formal safety analysis
of neural networks. Advances in neural information processing systems 31 (2018)

