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Abstract. We propose an object detection system for maritime search
and rescue as a benchmark problem for veri�cation of neural networks
(VNN). The model to be veri�ed is a YOLO (You Only Look Once) deep
neural network for object detection and classi�cation and has a very high
number of learnable parameters (millions). We describe the work�ow for
de�ning and generating robustness properties in the regions of interest of
the images, i.e., in the neighborhood of the objects to be detected by the
neural network. This benchmark can be used to assess the applicability
and the scalability of existing VNN tools for perception systems based
on deep learning.

URL. Benchmark materials, such as trained models (.onnx), examples
of properties (.vnnlib), test images, and property generation procedures,
are available at https://github.com/loonwerks/vnncomp2023.

1 Introduction

Generally, maritime surveillance has been conducted using means such as satel-
lites and manned aircraft. These have been limited in their ability to provide
high-resolution, real-time video processing for various reasons. For example,
satellite bandwidth is not ideal to handle large amounts of real time data, while
rotorcrafts and �xed wing platforms can be very expensive. Current develop-
ments with quadcopters and other small drones have enabled additional options
that are much cheaper than larger aircraft. Such unmanned vehicles can be
equipped with various sensors and signal processing algorithms to enable auto-
mated identi�cation of regions where search and rescue e�orts may be focused,
thereby reducing the time to rescue that can be very limited [1].

One enabling technology for this application is computer vision that is pow-
ered by state-of-the-art Machine Learning (ML) algorithms and provides reliable
object detection and classi�cation functions. Trustworthiness of these ML-based
functions is of paramount importance, because their degraded performances and
failures may signi�cantly reduce the chances of people in distress to be res-
cued timely, thus impacting the safety. Therefore, learning assurance process
and methods [4] need to be applied to guarantee the expected performance and
the robustness of the ML-based search and rescue system. In particular, formal
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methods can be e�ective means of assessing the robustness of perception-based
models, for example, to noise and other adverse inputs [3].

This benchmark problem intends to challenge the VNN community in the
direction of verifying properties of large-scale neural networks for computer vi-
sion, such as object detection networks. It has also been submitted to the 2023
VNNComp event1, along with few other benchmarks on YOLO neural networks.
To the best of our knowledge, this is the �rst time when such benchmarks have
been proposed for VNN tools.

2 Model Description

The object detection model chosen as a basis of the benchmark is a YOLOv5-
nano neural network (NN). The objective is to assess current capabilities of VNN
tools for verifying properties of deep neural networks of high complexity, such
as YOLOs. The �nano� version of a YOLO has been selected for the sake of an
incremental approach to complexity. It contains much fewer learnable parameters
compared to its original, full-scale YOLO version. Furthermore, to make the
model supported by VNN tools, SiLU activation functions have been replaced
with (piecewise linear) Leaky ReLU activations.

The model has been trained on the SeaDronesSee dataset2 [5] [2] consisting
of maritime search and rescue scenarios captured using a drone, generated by
the University of Tuebingen. Examples of images used in the benchmark are
shown on Figure 1. The dataset includes of 8930 training images and 1547 vali-
dation images, all of which are labelled with bounding boxes and corresponding
classes. There are six classes in the dataset, such as �boat�, �person�, �jetski�. The
intended function of the YOLO model is to detect objects of these classes on
the water surface, draw bounding boxes around them, and classify them. Model
outputs can be communicated to the operator at the ground station who can
use this information to dispatch rescue missions and vehicles.

(a) (b)

Fig. 1: Examples of images used to formalize benchmark properties.

1 https://sites.google.com/view/vnn2023
2 SeaDronesSee dataset is used on a license.
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The YOLOv5-nano model has 157 layers and around 1.8 × 106 learnable
parameters. The training has been done with an input image size of 640× 640.
The model has 3 output layers. The total input and output size of the model are,
respectively, 1.2×106 and 277×103 (note that the numbers have been rounded).

3 Property Description

This benchmark focuses on robustness properties that are formalized using L∞
norms, same as in many other existing benchmarks and applications. Such eval-
uation is an important starting point in assessing the applicability of VNN tools
to object detection models, such as YOLO.

3.1 Robustness properties overview

Robustness properties are formulated by applying perturbations to selected in-
puts and requiring that the predicted class remains unchanged, while allowing
for a bounded decrease of the con�dence of object existence. The motivation is
to keep the object detector robust, for example, to di�erent lighting conditions
and, possibly, to adversarial attacks. Robustness is particularly relevant to the
detection of swimmers on the water surface, because misclassi�cations and false
negatives can have a signi�cant safety impact: for example, a person could not get
noticed and, as a consequence, not rescued or rescued too late. The benchmark
represents local robustness by applying L∞ perturbations to the neighborhood
of objects (e.g., persons, boats) in the image3. The neighborhood is determined
from the bounding box, which corresponds to the model detection of the object
on the original unperturbed image.

Mathematically, local robustness properties are de�ned in the �delta-epsilon�
form, which makes use of the in�nity norm:

||x′ − x||∞ < δ =⇒ ||f(x′)− f(x)||∞ < ϵ. (1)

where x ∈ X is the original input (image) belonging to the input space X of the
ML model, x′ ∈ X is the perturbed input, f(x) and f(x′) are ML model outputs
for, respectively, x and x′, δ and ϵ are as discussed above (δ, ϵ ∈ R>0), and || · ||
is a norm that measures the distance between original and perturbed inputs and
outputs. Local robustness requires that for an input perturbation bounded by
δ (precondition ||x′ − x||∞ < δ) the output must not deviate by more than ϵ
(postcondition ||f(x′)− f(x)||∞ < ϵ).

3 We note that in future work it may be possible to also identify more meaningful
perturbations, such as changing the colors of certain objects in the image (e.g., life
jackets from red to blue). Such modi�cations may require additional image processing
to precisely identify the pixels to apply perturbation to, which brings additional
challenges to be solved.
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3.2 Robustness properties for the YOLO model

Current benchmark includes robustness properties for di�erent pixel perturba-
tion magnitudes δ, ranging from 0.1% to 10%. Pixel perturbations are applied
in the neighborhood of objects on the water surface (e.g., swimmers, boats) in
order to see whether their detection changes due to modi�cation in (or near) the
pixels belonging to the object. The following steps are executed to formalize a
robustness property, for a given δ:

1. Randomly pick a dataset image x;
2. Downscale4 the image (including padding, if necessary) to match the NN

input size (640× 640), obtaining image xin;
3. Perform NN inference on the downsized image to compute bounding boxes

bouti ∈ Bout and respective classes (1 ≤ i ≤ |Bout|, where Bout is the set
of bounding boxes predicted for the image obtained after post-processing of
the NN output);

4. Upscale bounding boxes to the original image size, getting the boxes bi ∈ B
(1 ≤ i ≤ |B|, considering that |B| = |Bout|);

5. Randomly pick one bounding box b from B, corresponding to one of the
objects detected on the image;

6. De�ne a space of possible perturbations on the original-size image x, by
applying L∞ to pixels inside the bounding box b, and downscale it to the
NN input size (see next section for details). Impose input constraints that
the input perturbation is within δ, i.e., pixel perturbations are bounded by
x− δ and x+ δ for the original size image and by (x− δ)in and (x+ δ)in for
the downscaled image;

7. Impose output constraints that (1) the bounding box class con�dence on the
perturbed image is still the highest among all classes and that (2) the object
existence con�dence does not deviate by more than ϵ = 10%.

In this procedure, input constraints correspond to the precondition of the local
robustness property, while output constraints correspond to its postcondition.

Key challenge. The main challenging aspect of the benchmark is the large
number of inputs and outputs (on the order of, respectively, 106 and 105). The
former is due to the need of using a high-resolution image in the search and rescue
application, because some objects, such as swimmers, are often very small (e.g.,
due to high �ight altitudes of the drone). Therefore, further decrease of the input
size of the YOLO model signi�cantly hampers its prediction performance.

4 Property Generation

The formulation of the properties required to address two technical issues. The
�rst one is the mismatch between the size of original dataset images and the NN
input size. To encode the input constraints, perturbation range for the pixels

4 Resizing is performed via OpenCV resize() command (bilinear interpolation).
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belonging to the selected area/bounding box is to be set to the range between
x−δ and x+δ. Since the selected bounding box bout computed by the NN refers
to the downscaled image xin, b

out is �rst upsized to b on the original image x;
then the perturbation is applied within b, leading to pixel perturbation range
between x− δ and x+ δ, leaving the area of x outside of b unmodi�ed. Finally,
the images containing the two perturbed bounding boxes are downscaled to the
NN input size as (x− δ)in and (x+ δ)in.

The second issue depends on the postprocessing applied to the NN output.
The output bounding boxes and their respective classes are derived from the NN
�raw� output of size ∼ 25200× 11, consisting of candidate boxes and probability
estimates, by means of a non-trivial sequence of operations, including multiple
phases of threshold-based �ltering and the application of a Non-Maximum Sup-
pression algorithm to resolve overlaps. To encode the output constraints, which
are expressed in terms of the NN raw output, an algorithm has been implemented
to trace the selected bounding box back to the corresponding raw data.

5 Concluding Remarks

Robustness assessment of vision-based systems, such as object detection, is one
of their key certi�cation objectives. European Union Aviation Safety Agency
(EASA) in their Concept Paper for Level 1&2 Machine Learning Applications [4]
emphasizes Formal Methods (FM) as anticipated means of compliance for the
veri�cation of robustness of ML models. FM tools can become a critical enabler
of AI/ML trustworthiness [3], therefore, aviation industry is looking forward to
maturation and improvement of relevant technologies. The proposed benchmark
has the intent of being a motivating example of a realistic application in the
aerospace domain.
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