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Abstract. With the introduction of large language models, AI for nat-
ural language have taken a leap. These systems are now also being used
for tasks that has previously been dominated by symbolic methods, such
as program synthesis and even to support formalising mathematics and
assist theorem provers. We survey some recent applications in theorem
proving, focusing on how they combine neural networks with symbolic
systems, and report on a case-study of using GPT-4 for the task of au-
tomated conjecturing a.k.a. theory exploration.

1 Introduction

With recent developments of very capable Large Language Models (LLMs) such
as GPT-4 [14], many of us now investigate how to best combine the genera-
tive capabilities of LLMs with symbolic systems like theorem provers. LLMs are
sometimes unreliable and prone to hallucinate, simply “invent” stuff, and occa-
sionally fail on seemingly trivial problems. While there is work on using LLMs
to directly reason in mathematics, via chain-of-thought prompting and similar
techniques e.g., [12], we believe a more reliable way forward is to induce the
LLM to provide inputs to symbolic systems, like theorem provers to do the ac-
tual reasoning. Work on autoformalisation [17], concerns the task of translating
problems expressed in natural or informal language into the input languages
of interactive theorem provers such as Mizar [10] and recently also, by using
LLMs, Isabelle/HOL [19] or Coq [2]. There is also work on getting LLMs to gen-
erate proof-scripts, or parts thereof [6, 5, 20]. These proof scripts may of course
contain errors, but these will be flagged when run through the corresponding
proof-assistant and can be patched by a human user or (symbolic) automated
proof repair tools. Finally, we also mention that GPT-4 has recently been fitted
with the capability to interact with external tools like Wolfram Alpha, via its
Code Interpreter interface. This way, certain problems can be outsourced to ex-
ternal systems, for which suitable symbolic inputs are generated. Early results
on problems from maths and science were mixed [3].

2 Automated Conjecturing

We are interested in the task of inventing suitable lemmas or conjectures, which
can help theorem provers by enriching their background theories, in particular



for automating proofs by induction [8, 9, 16]. Given a set of datatypes and
function definitions, what interesting properties can be discovered? The problem
of automated conjecturing is certainly not new to research in (symbolic) AI: there
are several early systems based on specialised heuristics such as AM and Graffiti
[11, 4], followed later by HR (integer sequences) and MATHsAiD (algebra) [1,
13]. The above-mentioned systems all use search, but there is also work on neural
network driven methods [18, 15] which has managed to generate some lemmas,
however also producing many repetitions of known lemmas and non-theorems.

2.1 Case Study: Theory Exploration in GPT-4

In a recent case-study (described in more detail in [7]), we wanted to investigate
how the GPT-4 system would perform on a lemma discovery task, zero-shot.
We prompted GPT-4 with theories written in the syntax of the Isabelle/HOL
proof assistant and asked it to provide lemmas also in this syntax. This approach
requires some care: as GPT-4 is trained on code from GitHub, we were aware
that our benchmarks used from our Hipster theory exploration system [9], very
likely were in the training data (which also was confirmed by GPT-4 occasionally
producing close copies to Hipster’s output), together with existing libraries for
Isabelle/HOL. We thus instead chose to port a Haskell library about drawings
and geometry to Isabelle. Some interesting observations can be made: Gener-
ally, GPT-4 was very consistently producing outputs in correct Isabelle syntax,
which could be pasted into the proof-assistant with little or no further editing.
Each run will differ slightly, as the system is probabilistic, but it consistently
produces “generic” lemmas, such as associativity, commutativity and distribu-
tivity for binary functions and unary functions being their own inverses. As these
properties are quite common, it is probably sensible suggestions, but does not
take anything else from the function definitions into account, and hence lead
to many non-theorems (false statements). Occasionally though, GPT-4 came up
with other useful lemmas, for instance relationships between rotating drawings
varying degrees.

Compared to a symbolic theory exploration system, GPT-4 can use the se-
mantics of function names to occasionally “hallucinate” some additional function
which could be of interest, but the user had not thought of including. It also
does not have any restrictions of the size and shape of the lemmas generated,
so no special treatment is needed for implications compared to equalities, unlike
symbolic systems. On the downside, GPT-4 is less predictable than a symbolic
system and will need to be run several times to achieve decent coverage. It is
also difficult to fairly evaluate, as we don’t know exactly what is in its training
data.

3 Conclusions and Further Work

Using LLMs for lemma discovery has some complementary features to fully sym-
bolic systems. How to customise and use such systems for making analogies be-
tween theories, use them to make analogies between theories and potentially



combine them with symbolic lemma discovery systems is interesting further
work. Lemma discovery systems have so far been limited to simple toy theo-
ries and simple functional programs, of little use to formal methods and more
advanced mathematics, where proofs typically require highly contextualised lem-
mas of larger size than symbolic systems deal with well. Whether LLMs can help
narrowing this gap is still an open question.
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