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Abstract. Deep reinforcement learning (DRL) has succeeded tremendously
in many complex decision-making tasks. However, reward structures of safety-
critical applications are not well suited for standard DRL training because
they are typically very sparse and undiscounted. Various exploration strate-
gies have been proposed to address the problem of sparse rewards. However,
they do not take information about the current safety performance into ac-
count; thus, they fail to systematically focus on the parts of the state space
most relevant for training. Here, we propose regret and state restoration
in evaluation-based deep reinforcement learning (RARE), an algorithm that
introduces two innovations: (i) it combines deep statistical model checking
evaluation stages with state restorations, i.e., restarting episodes in formerly
visited states, and (ii) it exploits estimations of the regret, i.e., the gap be-
tween the policies’ current and optimal performance. Besides others, we show-
case that both innovations are beneficial. RARE outperforms baselines such
as deep Q-learning and Go-Explore in an empirical evaluation.

1 Introduction

Over the past decade, deep reinforcement learning (DRL) has made remarkable
advancements in various complex decision-making tasks. Notably, it has demon-
strated exceptional success in domains such as board games, including chess and go
[40,41,42]. Additionally, its practical applications have extended to domains such as
vehicle routing [33], robotics [21], and autonomous driving [37].

Despite these successes, DRL still suffers from significant weaknesses, especially
in safety-critical applications. Safety objectives typically yield degenerated reward
structures. For instance, maximizing the probability of reaching a goal state without
getting trapped in an unsafe (absorbing) state yields an extremely sparse reward: 1
in the goal state and 0 elsewhere. DRL is known to perform poorly with such sparse
reward structures [2,22,30,36,39]. Hence, for (D)RL training to be able to identify
a useful policy, proxy objectives are used, such as discounted cumulative rewards
giving positive feedback for goal states and (highly) negative feedback for unsafe
states [15].

There are sophisticated exploration strategies to handle sparse reward prob-
lems [4,8,11,12]. However, they perform poorly in safety-critical applications. While
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these strategies are good at exploring the state space, their training process is con-
ducted without systematically including the current (safety) performance, thereby
neglecting to focus on areas where training is more important.

We introduce a DRL algorithm capable of handling degenerated reward struc-
tures and addressing safety-critical applications. We propose two innovations: (i)
we combine deep statistical model-checking (DSMC) evaluation stages [19,15] with
state restorations, where we start new training episodes in carefully selected states
based on the previously evaluated performance, and (ii) we exploit estimations of
the regret [27], i.e., the gap between the current and optimal performance, to focus
the training on high-regret states.

Our state restoration procedure (innovation (i)) draws inspiration from Go-
Explore [11]. During training, we store states deemed interesting for learning and
sample initial states for subsequent training episodes from them. We leverage re-
cent work on evaluation stages to identify states that provide us with particularly
valuable information for training. These evaluation stages use deep statistical model
checking [18] to obtain information about the safety properties of the current policy.

Based on the evaluated performance, we estimate the regret (innovation (ii)).
We propose two different techniques to focus the training on archived states where
the regret is high, i.e., where the policy is far from optimal: starting more training
episodes in such states or giving them a higher priority within the replay buffer
that we use for batch updates of the agent’s neural network. Using the results from
the evaluation stages to obtain the regret approximation allows us to inform the
algorithm also about the original safety objective, even when a proxy objective
needs to be used for learning.

We consider an illustrative example. Figure 1 depicts a map of the Racetrack,
one of our benchmarks, where the goal is marked in green. The agent starts in one
of the two purple cells in the lower right corner and must navigate through the grid
up to the goal cells. Due to uncertainty in the environment, the narrow connections
between the bottom cells (visited with a low probability) and the rest of the map lead
to a reduced maximum achievable goal reachability probability from these bottom
cells.

Now consider Figure 2, which depicts how often states from each grid cell have
been used to update the policy. Standard DRL algorithms only start training from
the initial states and fail to explore the state space sufficiently.

Fig. 1: Racetrack’s
extended Maze map.

Figure 2a shows that the states near the goal line have
never been used to update the policy. Go-Explore, a DRL
algorithm utilizing state restorations, thoroughly explores
the map. However, it is unable to focus the learning on the
most relevant parts, and further, it is unable to find a solu-
tion from the cells at the bottom part of the map, as it only
rarely starts from there. In contrast, Figure 2c was created
by using our proposed technique of state restoration com-
bined with evaluation stages (innovation (i)). The agent
reaches the goal and is able to solve the task, also from the
more difficult part at the bottom. Hence, the corresponding
policy’s average return and maximum goal reaching prob-
ability are higher. Still, it visits the cells at the bottom of
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(a) Plain Rein-
forcement Learn-
ing.

(b) Go-Explore. (c) Using state
restoration.

(d) Using regret
and state restora-
tion.

Fig. 2: Heatmaps visualizing how often states from each grid cell have been used to
update the policy during training.

the map unnecessarily often. Lastly, consider Figure 2d, which also includes regret
estimation, i.e., both innovations (i) and (ii). As soon as the agent finds a solution
for the bottom part, it shifts its focus (recognizable on the color scale, especially
compared to 2c). Thus, it is able to train more in regions where the performance
can still be improved, resulting in an even better overall performance.
To summarize, the contribution of our paper is as follows:
(i) We present our algorithm regret and state restoration in evaluation-based deep
reinforcement learning (RARE) in Section 3.
(ii) We conduct an ablation study (Section 4) to demonstrate the effect of both state
restoration and regret separately.
(iii) Section 5 provides an empirical evaluation of RARE, comparing it to the base-
lines deep Q-learning, deep Q-learning with prioritized replay, and Go-Explore on
two benchmarks.

2 Background

Prior to presenting our contributions, this section covers foundational concepts.

2.1 Markov Decision Processes and Deep Q-Learning

We consider discrete Markov decision processes (MDPs) with finite sets of states S,
actions A, and an initial distribution µ over the set of initial states I ⊆ S. For states
st, st+1 ∈ S, a transition from state st to st+1 when choosing action at ∈ A corre-
sponds to an experience (st, at, rt+1, st+1), where rt+1 ∈ R is the obtained reward.
Our goal is to compute a deterministic policy π : S → A that maximizes the sum of
the discounted accumulated rewards, also called the return, Gt =

∑T
k=t+1 γ

k−t−1Rk,
where Rk is the random variable of the k-th reward, T is the final time step, and
γ ∈ (0, 1] denotes the discount factor, which balances the importance of immediate
and future rewards. For a fixed policy π and a given state st, we define the Q-value
of state st and action at

qπ(st, at) = Eπ [Gt|St = st, At = at] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = st, At = at

]
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as the expected return Gt when taking action at in state st and following the policy
π afterward.

Value-based algorithms, such as deep Q-learning [31] (DQN), approximate an
optimal policy π∗ by learning the Q-values. Deep Q-learning uses a neural network
(NN) to learn q∗(st, at) of the optimal policy π∗. Let θi denote the NN’s parameters
in the i-th training iteration and let Qθi(st, at) be the corresponding estimated Q-
values. The network is updated according to the loss function

L(θi) = E(st,at,rt+1,st+1)∼U(B)

[(
rt+1 + γ ·max

a′
Qθ′(st+1, a

′)−Qθi(st, at))
)2]

,

where the expectations are taken over experiences (st, at, rt+1, st+1) uniformly sam-
pled from an experience replay buffer B [31]. To prevent unstable performance,
it is common to optimize this network by using a network from a former itera-
tion, the so-called target network with parameters θ′ [31]. The soft update rule is
θ′ = (1− τ) · θi + τ · θ′ with τ ∈ (0, 1) [13,43].

The experiences are generated from an ϵ-greedy policy that chooses a random
action with probability ϵ and an action yielding the highest Q-value with probability
1 − ϵ. Starting from a high initial value, ϵ is exponentially reduced during training
until it meets a specified threshold.

A popular extension of the DQN algorithm, called deep Q-learning with priori-
tized experience replay (DQNPR) [38], is based on the assumption that experiences
with low individual losses do not contribute as much to the learning process as ex-
periences with high losses since they carry less relevant information. Hence, for each
experience (st, at, st+1, rt+1), DQNPR computes a sampling priority δ proportional
to its loss. During network updates, each experience gets sampled with a probability
proportional to δ, such that experiences with high losses are used more frequently
to update the policy than experiences with small losses.

2.2 DSMC Evaluation Stages

DSMC evaluation stages [19,15] leverage deep statistical model checking [17,18] to
analyze the performance of DRL agents with regard to safety-critical properties.

DSMC uses the policy given by an NN to resolve the nondeterminism in the MDP
constituting the environment. Subsequently, it performs Monte-Carlo-simulations
until the estimated probability of the analyzed property is within a statistical con-
fidence bound.

DSMC evaluation stages are conducted at regular intervals during training to
evaluate any evaluation function E. The corresponding value for a state s is called
the evaluation value E(s). Previous work [19,15] proposes two different methods
for incorporating the information gained through the ES into training, based on the
assumption that the possible initial states for the problem at hand can be partitioned
into a feasibly small set of state space regions:

(1) Evaluation-based initial distribution (EID) shifts the initial distribution to start
with a higher probability in areas with a lower evaluation value and vice versa.

(2) In many DRL algorithms, a replay buffer is used. Following the idea of DQNPR,
this replay buffer can be prioritized. However, instead of using the TD-error as
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the priority, evaluation-based prioritized replay (EPR) bases the priority on the
evaluation value.

DSMC evaluation stages have been shown to be especially useful when utilizing eval-
uation functions for safety-critical objectives that are not directly suited as reward
functions.

2.3 Benchmarks

Racetrack is a commonly used benchmark in the (D)RL community [7,16,20,44].
The task is to steer a car on a two-dimensional map from the starting line to reach a
goal line without crashing into a wall or leaving the map. The agent is limited in its
acceleration and deceleration of the current velocity, making foresighted decisions
necessary. In addition, there is a certain probability that the selected acceleration
will fail and, as a result, the velocity will remain unchanged. We will use one of the
reward functions recommended by Gros [14], giving a positive reward (100) when
reaching the goal, a negative one (−20) when crashing, and a zero reward else.
Figure 3 shows three maps used in this paper besides the one displayed in Figure 1.

(a) River-deadend. (b) Maze. (c) Hansen-bigger.

Fig. 3: Three Racetrack maps used in this paper. The starting line is purple, the goal
line is green, and the walls are gray.

MiniGrid is a benchmark widely used in the DRL community [9,10,12,27,35]. A
MiniGrid environment corresponds to a discrete grid world where the agent needs
to navigate through the grid and possibly interact with objects to solve the task.
Figure 4 shows our custom DynObsDoor environment, where, starting at the top
left-hand corner, the agent needs to walk past walls and avoid collisions with the
randomly moving obstacles to reach the green goal cell. Furthermore, it must open
the yellow door in the middle of the grid. The reward function used is similar to the
one in Racetrack: positive (1) when winning, negative (−1) when losing, and zero
else.
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Fig. 4: The DynObsDoor environment. The starting cells are yellow, the goal cell is
green, and the walls are gray. The blue dots are randomly moving obstacles.

3 Regret and State Restoration in Evaluation-based Deep
Reinforcement Learning

This sections presents our algorithm regret and state restoration in evaluation-based
deep reinforcement learning (RARE). We distinguish two variants: (i) regret and
state restoration in evaluation-based initial distribution (RAREID), and (ii) regret
and state restoration in evaluation-based prioritized replay (RAREPR). Both share
the idea of conducting evaluation stages and exploiting this information for effective
training in two different ways.

3.1 Idea

In a nutshell, our idea is to store states that seem interesting during the learning
process in an archive. During a regular DSMC evaluation stage, we first reduce the
archive A to its most relevant subset (to achieve a fixed size) and then evaluate
all states s ∈ A ∪ I. To identify states with suboptimal performance, we use the
evaluation values to approximate the regret, i.e., the distance between the optimal
and current performance when the agent starts in this state. Subsequently, we either
shift the distribution of starting states in favor of high-regret states (RAREID) or
prioritize the replay buffer B according to the estimated regret (RAREPR).

3.2 Details

As in prior work [15,19], we carry out evaluation stages at C-step intervals through-
out training. In every learning stage, a new archive Aj+1 is constructed and pro-
vided to the following evaluation stage. In every evaluation stage, we first reduce
the archive, then use said reduced archive to compute a distribution D (RAREID)
or priorities δ (RAREPR), and afterward provide both to the next learning stage.

We present our algorithm step by step, as illustrated in Figure 5. We begin with
the learning stage, subdivided into five distinct components. Initially, in the first
learning stage, we use the set of initial states as the archive, i.e., A0 = I, and use
the initial distribution to select a new starting state, i.e., s ∼ µ(I). For RAREPR,
we additionally use constant values for δ.
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Learning Stage Evaluation Stage

(L1)

(L2)

(L3)

(L4)

(L5)

Probabilistically Select State from Archive:

s ∼ D(Aj)
s ∼ U(Aj)

or
s ∼ µ(I)

Restore State:

Restore environment
to s

Run goal-conditioned
policy

Generate Experiences:

Determine Interest in States and Expand Archive:

Value heuristic Novelty heuristic

Add s to Aj+1

Learn from Experiences:

(s, a, s′, r) ∼ U(B) (s, a, s′, r) ∼ δ(B)

(E1)

(E2)

(E3)

(E4)

Reduce Archive:

Reduce archive Aj+1 to fixed
size

Conduct Evaluation:

Compute evaluation values
Eπ(s) ∀s ∈ Aj+1 ∪ I

Approximate Regret:

R̂(s) = Ebest(s)− Eπθ
(s)

Update Priorities:

D(Aj+1) δ(B)

A
j+
1

Aj+
1,
D/δ

tr
a
in
in
g
lo
o
p

RAREID RAREPR

RAREID RAREPR

RAREID RAREPR

Fig. 5: Graphical Depiction of the RARE algorithm.

(L1) Probabilistically Select State from Archive: In the case of RAREID, we
sample a state s according to D(Aj). For RAREPR, we first choose with equal
probability for either sampling s from the MDP’s initial distribution µ or from
archive Aj according to the uniform distribution U .

(L2) Restore State: We restore the just sampled state s by either using the envi-
ronment’s restore option or running a goal-conditioned policy from an initial
state until s is reached [11].

(L3) Generate Experiences: We generate new experiences by applying the DRL
algorithm of choice starting from s.

(L4) Determine Interest in States and Expand Archive: For all states visited
during the last episode, we check whether they are of interest, i.e., whether
they contain information valuable for learning. If affirmed, we add those states
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to the new archive Aj+1. We determine the interest by looking at two domain-
independently applicable heuristics:

(i) Value Heuristic: We check for all episodes’ states the smoothness of the
corresponding state values, i.e., when transitioning from a state to its suc-
cessor, we expect |Vπθ

(st)− (Vπθ
(st+1) + rt)| to be small, where πθ is the

current policy and the state values are estimated by the NN. A significant
difference indicates that the agent might have made a poor decision in
that state or that the state values of the current policy have not yet been
propagated through the entire state space.

(ii) Novelty Heuristic: We leverage recent work of random network distillation
(RND) [8]. At the beginning of training, we randomly initialize a neural
network that returns a real-valued output for each state input. We use
our agent’s training observations to fit a second neural network to predict
the output of the first one. As a result, for sufficiently explored states, the
disparity between these networks is minimal. However, the difference is
significant for infrequently or never encountered states. Consequently, this
provides a reliable estimate of the novelty of a given state.

(L5) Learn from Experiences: We update the agent’s network using observations
in the replay buffer. In the case of RAREID, we sample uniformly, and for
RAREPR, we sample based on the priorities δ determined by the most recent
evaluation stage.

Note that the learning stage uses the current archive Aj jointly with the distri-
bution D (RAREID) or the priorities δ (RAREPR), respectively, in stages (L1) and
(L5). However, archive Aj+1 contains the states stored for the next evaluation stage
(L2). At the end of the learning stage, the new archive Aj+1 is expanded by the
current one Aj . This resulting archive Aj+1 is provided to the evaluation stage for
further processing, which consists of four parts:

(E1) Reduce Archive: The number of interesting states may vary throughout the
learning stages. Thus, we reduce the archive to a fixed size before performing
the evaluation. We employ two different strategies to reduce the archive size,
both rooted in difference measures of the provided states’ descriptions. Both
strategies strive to achieve the greatest possible coverage of the explored state
space while retaining the most interesting states. For details, see Appendix A.

(E2) Conduct Evaluation: We evaluate each state contained in the archive or
the set of initial states, i.e., s ∈ Aj+1 ∪ I, w.r.t the evaluation function using
DSMC.

(E3) Approximate Regret: In this part, the regret is incorporated into RARE.
For each state s ∈ S, the regret is defined as the difference between the state
values of the optimal and the current policy [6,34], i.e.,

Regret(s) = v∗(s)− vπθ
(s),

where vπθ
is the current policy with network weights θ.
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As we are able to evaluate an arbitrary evaluation function and not just the
value function, we here introduce the evaluation regret

R(s) = E∗(s)− Eπθ
(s),

where E∗ is the evaluation of the optimal policy and Eπθ
the evaluation of the

current policy πθ. Naturally, the real value of E∗ is unknown. Thus, we follow
the idea of Jiang et al.’s MaxMC method [27] and approximate the regret as

R̂(s) = Ebest(s)− Eπθ
(s),

where Ebest denotes the best evaluation value encountered for all states in close
Euclidean proximity to the given states’ description in previous evaluation
stages. If no such state has formerly been evaluated, Ebest is set to 1, ensuring
the agent’s emphasis on this state during the next learning stage. Note that we
linearly interpolate the evaluation values to [0, 1] [19]. Further, we also linearly

interpolate R̂ to the same interval.

(E4) Update Priorities: We calculate a distribution for states in the archive
(RAREID) or the priorities to be used for the replay buffer (RAREPR) based
on the estimated regret, respectively. While we want the agent to focus on
states with a high regret, the initial states, as the task’s original objective, are
of special interest. We define

ψ = clip

(
1

|I|
∑
s∈I

E(s), 1− ψmax , ψmin

)
(1)

as the clipped average evaluation value of the initial states I, where ψmax and
ψmin are hyperparameters.
Considering RAREID, we set the distribution D such that the probability p(s)
to start in a certain state s ∈ Aj+1 is given by

p(s) =


(1− ψ) · R̂(s)+ϵp∑

s′∈A∪I(1−R̂(s′)+ϵp)
s ∈ I

ψ · R̂(s)+ϵp∑
s′∈A∪I(1−R̂(s′)+ϵp)

else
, (2)

where ϵp is a hyperparameter to ensure all samples have a non-zero probability.
Moreover, p(s) increases for states with a high regret and vice versa. The
additional weighting with ψ ensures that the initial states are considered often
enough to prevent catastrophic forgetting [29], depending on their current
evaluation.
Considering RAREPR, the replay priority of each state is

δ(st) =

{
(1− ψ) · (R̂(s0) + ϵp)

α if s0 ∈ I
ψ · (R̂(s0) + ϵp)

α else
, (3)

where ϵp is the minimal priority, and s0 is the initial state of the corresponding
episode of experience (st, at, rt+1, st+1). The priority is higher if the regret is
higher and vice versa. Again, the weighting with ψ considers the initial states
particularly.
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3.3 Regret and State Restoration in Evaluation-based Deep Q-learning

This paper uses Mnih et al.’s deep Q-learning as a base algorithm to implement
RARE. We describe the complete algorithm in pseudo-code in Algorithm 1 (see Ap-
pendix B). The components of the RARE algorithm are highlighted in blue. However,
note that RARE can easily be adapted to any kind of (deep) reinforcement learning;
particularly RAREID to any such algorithm and RAREPR to any algorithm using
a replay buffer.

4 Ablation Study

This section is dedicated to examining the two innovations of the RARE algorithm,
(i) state restoration and (ii) regret, to highlight their impact.

All reported results were computed by using DSMC with κ = 0.05 and ϵ = 0.01
for the goal reachability probability, or ϵ = 1 for the return, respectively, i.e., with
a probability of 95% that the error is at most 0.01 (goal reachability probability) or
1 (return).

4.1 State Restoration

To demonstrate the effect of state restoration, we remove the regret estimation from
RARE and only consider state restoration. Concretely, we replace R̂(s) with (1 −
E(s)) in Equations (2) and (3), i.e., we compute the priorities and distribution only
based on the evaluation values instead of computing them based on the regret.

For the sake of clarity, we write REID (state restoration in evaluation-based
initial distribution) or REPR (state restoration in evaluation-based experience replay),
respectively, when we refer to the algorithms without the regret estimation.

We conduct experiments where we compare the performance of two baselines,
namely DQN and DQNPR, to both REID and REPR using two different evaluation
functions: (i) the original objective, the return function (which we indicate with the

(a) Average return. (b) Average goal reachability probability.

Fig. 6: Average return and goal reachability probability achieved by DQN, DQNPR,
REID, and REPR on Racetrack. Training failed means that the agent was unable
to find the goal during training.
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(a) DQN. (b) DQNPR. (c) REIDR. (d) REPRR.

Fig. 7: Return achieved per map cell with zero velocity on the River-deadend map.

superscript R), and (ii) an objective not suited as a reward function, the goal reacha-
bility probability (which we indicate with the superscript G). As deep reinforcement
learning is known to be sensitive to different random seeds, we perform multiple
trainings and report the average result over all agents that were able to solve the
task (here: find the goal).

Consider Figure 6a, which shows the achieved return for three different maps
of the Racetrack for DQN, DQNPR, REIDR, and REPRR when starting only in
the original initial states, i.e., on the purple-colored starting line with zero velocity.
For the River-deadend map, the performance is roughly equal, while for Maze and
Hansen-bigger, both evaluation-based approaches clearly surpass the baselines.

Now additionally take into account Figure 7, displaying the achieved return
throughout the map for River-deadend. Although the baselines perform similarly
to the RARE algorithm when starting in the initial states, the latter clearly per-
forms better throughout the complete map.

Using the goal reachability probability instead of the return as evaluation func-
tion E (see Figure 6b) gives the exact same observation: REID and REPR outper-
form the baselines. Thus, we demonstrated the benefits of using state restoration.

4.2 Regret

Fig. 8: Average goal reachability
probability.

We now turn to the second novelty within
RARE, regret. To analyze the impact of the
regret, we compare the performance of RARE
without employing the regret (as in Section 4.1)
to the performance when regret is utilized.

Reconsider Figure 2 from the introduction.
The third heatmap (Figure 2c) was conducted
with REIDG, i.e., without using the regret but
still by using state restoration; the last one on
the right (Figure 2d) by RAREIDG, i.e., by also



12 Gros et al.

using the regret.1 Both approaches used the goal reachability probability as their
evaluation function. While they both ultimately supply good policies, Figure 8 shows
a benefit when using the regret, and Figure 2 clearly indicates that without using
the regret, the agent considers the map’s bottom part exaggeratedly often.

5 Empirical Evaluation

This section will provide a comprehensive empirical evaluation of the RARE algo-
rithms with baselines. For the latter, we use DQN and DQNPR, since our RARE
implementation is based on them, and Go-Explore, which is the approach that in-
spired our state restoration feature.

We conduct experiments on two benchmarks, namely the Racetrack and Min-
iGrid, using two different evaluation functions: (i) the original objective, i.e., the
return, and (ii) an objective not suited as a reward function, the goal reachability
probability.

The following results were all obtained by using DSMC with κ = 0.05 and ϵ =
0.01 (goal reachability probability), ϵ = 1 (return - Racetrack), and ϵ = 0.01 (return
- MiniGrid). We again perform multiple trainings and report the average result over
all agents that were able to solve the task. For further experiment details, we refer
to Appendix C.

5.1 Racetrack

Consider Figure 9, which provides results for three different maps of the Racetrack.
We report the performance from the initial states, i.e., the benchmark’s original
task.

(a) Average return. (b) Average goal reachability probability.

Fig. 9: Average return and goal reachability probability achieved by DQN, DQNPR,
Go-Explore, RAREID, and RAREPR on Racetrack. Training failed means that the
agent was not able to find the goal during training.

1 The map was specifically designed to clearly highlight the advantages for easy visual
discernment. Nonetheless, in the subsequent section, we will also showcase the advantages
of employing regret on widely-used maps and an additional benchmark.
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First, look at Figure 9a, where the return was used as an evaluation function and
where we display the average obtained return. While on River-deadend, RARE per-
forms roughly equal to the baselines (with an outlier by Go-Explore), both RAREID
and RAREPR outperform the baselines on the more sophisticated maps Maze and
Hansen-bigger. Now turn to Figure 9b, where the goal reachability probability was
used as an evaluation function and what we also report about. The findings are
similar: while on River-deadend the performance is roughly equal, RARE clearly
performs best on all other maps.

5.2 MiniGrid

We now turn to our second benchmark, the well-established MiniGrid benchmark.
Referring to Figure 10, the agents’ performance gets compared in terms of return
(Figure 10a) and goal reachability probability (Figure 10b). Accordingly, these were
also the evaluation functions used for RARE.

In contrast to Racetrack, here, the primary advantage of RARE over DQN and
DQNPR is that RARE is capable of solving the benchmark, while both DQN and
DQNPR fail to find the goal. This distinction is evident regardless of whether the
results are analyzed in terms of return or goal reachability probability. Go-Explore
is able to find the goal, but still, both RARE algorithms clearly perform better.

(a) Average return. (b) Average goal reachability probability.

Fig. 10: Average return and goal reachability probability achieved by DQN, DQNPR,
Go-Explore, RAREID, and RAREPR on MiniGrid. Training failed means that the
agent was not able to find the goal during training.

6 Related Work

Our work directly relates to Go-Explore, as our approach of state restorations com-
bined with evaluation stages was inspired by the work of Ecoffet et al. [11]. Similarly
to RARE, Go-Explore stores all visited states in its archive, yet instead of subse-
quently drawing states where safety performance is poor, as RARE does, Go-Explore
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draws the least frequently seen states. Thus, Go-Explore seeks to explore as much
of the state space as possible, whereas our RARE method focuses the training on
parts of the state space most relevant to safety objectives. Also, Go-Explore does
not take the regret into account.

Further, state restorations can be compared to the well-established idea of im-
portance splitting, where a restart is conducted from rare but relevant paths [32,26].

Recent work of Hasanbeig et al. [23] introduces a technique to include a property
expressed as an LTL formula and synthesize policies to optimize the probability of
fulfilling that LTL property. However, this method, while allowing for the specifica-
tion of complex tasks, does not address the problems tied to safety-critical reward
structures.

Similarly, Hasanbeig et al. [24] use LTL properties to derive meaningful reward
functions for unknown environments. Applying their method to the property used
in this paper (optimizing goal reachability probability without getting stuck in an
unsafe state) yields the exact reward function we employ: positive when reaching the
goal, negative when harming safety, and zero otherwise. Consequently, this otherwise
effective approach proves unhelpful in our case.

Our research also connects to safe reinforcement learning. Various studies inves-
tigate the usage of shields [1,5,25] or permissive schedulers [28] to restrict the agent
from reaching unsafe states, even during training. These methodologies, however,
demand pre-computed shields or permissive schedulers. In contrast, our proposed
method is model-free, and neither requires the computation of a shield or permissive
scheduler in advance, nor do we have to restrict the action (and thus the state) space
based on prior knowledge. Instead, the task is learned entirely through self-play and
Monte-Carlo-based evaluation runs. Moreover, our approach is further applicable in
more general scenarios, where states are not just differentiated into safe and unsafe,
but exhibit more granular distinctions.

7 Conclusion and Future Work

We proposed two variants of the RARE algorithm, namely RAREID and RAREPR.
We demonstrated that both innovations of RARE, (i) state restorations combined
with DSMC evaluation stages, and (ii) utilizing the regret estimation, are beneficial
when using deep reinforcement learning for safety-critical applications. Also, we
provided an empirical evaluation showing that RARE outperforms the standard
baseline of deep Q-learning and the related approach of Go-Explore.

In the future, we plan to incorporate a latent space representation into our al-
gorithm. This will enable automatic clustering of the observed states. Therefore, we
promise ourselves that this will help with (i) having a better selection of interesting
states in the archives, and (ii) enabling an even better estimation of the maximal
evaluation value and, thus, also improving our regret approximation.

In view of Anderson’s recent work [3], we aim to investigate whether combining
our algorithm with online shielding might improve the resulting policies’ perfor-
mance.

Also, even though this algorithm was specially designed to operate on sparse
reward tasks, a comparison on dense reward benchmarks is of interest, as we expect
our technique also to be beneficial in such settings.
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A Archive Reduction Strategies

In general, states from the same parts of the state space are likely of similar interest.
Hence, if we reduce an archive Aj+1 by only keeping the states which are most
interesting according to the utilized heuristic, the resulting states s ∈ Aj+1 might
be concentrated within close proximity of each other, preventing us from focusing
the training on all relevant parts of the state space. For this reason, we utilize archive
reduction strategies that aim to identify the most interesting states that are spread
throughout the state space. We introduce two different archive reduction strategies:

The cluster strategy groups nearby states into clusters and then only considers
the most interesting state s ∈ Aj+1 from each cluster to be kept in Aj+1. We realize
this for Racetrack and MiniGrid by utilizing their numerical state representation.

The max distance strategy aims to reduce the archive to the states that
cover the largest part of the state space possible. First, this strategy selects the
most interesting state s∗ ∈ Aj+1 to be kept, meaning we initialize the reduced
archive as A ′

j+1 = {s∗}. Next, the strategy enforces that every further state s that
is added to the reduced archive must fulfill

s = argmax
s∈Aj+1

min
s′∈A ′

j+1

∥s, s′∥2 ,

i.e., s has the largest minimum Euclidean distance to all of the already selected
states s′ ∈ A ′

j+1. Afterward, we set Aj+1 = A ′
j+1.
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B Pseudo-code

Algorithm 1 Regret and State Restoration in Evaluation-based Deep Reinforce-
ment Learning

1: initialize archive A0 = I
2: initialize ψ = 0.0
3: for episodes e = 0 to E − 1 do

4: sample s0 according to

{
p(s0) // [RAREID]

µ(s0) // [RAREPR]

5: for steps t = 0 to T − 1 do
6: apply heuristic h to st & add (st, h(st)) to Aj+1

7: with probability ϵ select random action at ∈ A(st)
8: otherwise with probability 1− ϵ select at = argmax

a∈A(st)

Qθi
(st, a)

9: execute at; observe st+1 and rt+1

10: compute δ =

{
constant // [RAREID]

δ // [RAREPR]

11: store (st, at, rt+1, st+1, δ) in replay buffer B
12: every K steps do
13: sample mini-batch of experiences (sj , aj , rj+1, sj+1, δ) from B w.r.t. δ

14: set target yj =

{
rj+1 sj+1 terminal

rj+1 + γ ·max
a′

Qθ′(sj+1, a
′) else

15: perform gradient descent step on loss (yj −Qθ(sj , aj))
2

16: soft-update the network weights θ′ = (1− τ) · θi + τ · θ′
17: end every
18: end for
19: if e > W then
20: every L episodes do
21: Aj+1 = reduceArchive(Aj+1)

22: compute R̂(s) = Ebest(s)− Eπθ (s) for all s ∈ Aj+1 ∪ I
23: update ψ
24: end every
25: end if
26: end for
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C Hyperparameters

Hyperparameters that are used in multiple algorithms but only have one table entry
have the same value in all instances.

Parameter Description Value
DQN:

E Number of episodes (Racetrack) 100.000
E Number of episodes (MiniGrid) 40.000
T Maximum episode length (Racetrack) 100
T Maximum episode length (MiniGrid) 200
γ Discount factor 0.99
K Q-network update frequency 4

Batch size 512
τ Soft update coefficient 0.001

ϵstart Initial exploration coefficient of ϵ-greedy policy 1
ϵdecay Decay factor of ϵ in each episode 0.999
ϵend Value of ϵ at the end of the training 0.05
|B| Size of replay buffer 108

αAdam Learning rate of Adam optimizer (Racetrack) 8 · 10−4

αAdam Learning rate of Adam optimizer (MiniGrid) 0.0001

Probability of acceleration failing
(Racetrack, River / Maze / Hansen)

0.5/
0.25/
0.25

DQNPR:
α Prioritization coefficient for sampling priorities 1
ϵp Minimum priority 10−6

RAREID & RAREPR:
W Number of pre-training episodes 10.000
L Evaluation frequency 10.000

ψmin 0.2
ψmax 0.2

Archive size after reduction
(Racetrack, River / Maze / Hansen)

127/
151/
292

Archive size after reduction (MiniGrid) 17
ϵp Minimum priority 0.2

ϵerr
Error in DSMC’s evaluation during training

(Racetrack, GRP / Return)
0.05/
4

ϵerr
Error in DSMC’s evaluation during evaluation

(Racetrack, GRP / Return)
0.01/
1

ϵerr
Error in DSMC’s evaluation during training

(MiniGrid, GRP / Return)
0.05/
0.1

ϵerr
Error in DSMC’s evaluation during evaluation

(MiniGrid, GRP / Return)
0.01/
0.01

κ Probability that DSMC’s error is at most ϵerr 0.05
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Go-Explore:
Number of demonstrations in robustification 10

Number of episodes during each exploration phase 100

Maximum number of archived states
(Racetrack, River / Maze / Hansen)

509/
606/
1168

Maximum number of archived states (MiniGrid) 69
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