
Towards a Formal Account on Negative Latency?

Clemens Dubslaff1,2, Jonas Schulz2,4, Patrick Wienhöft2,3, Christel Baier2,3,
Frank H. P. Fitzek2,4, Stefan J. Kiebel2,5, and Johannes Lehmann2,3

1 Eindhoven University of Technology, Eindhoven, The Netherlands
c.dubslaff@tue.nl

2 Centre for Tactile Internet with Human-in-the-Loop (CeTI)
3 Department of Computer Science, Dresden University of Technology, Germany

{christel.baier,johannes_alexander.lehmann,patrick.wienhoeft}@tu-
dresden.de

4 Department of Electrical Engineering, Dresden University of Technology, Germany
{frank.fitzek,jonas.schulz2}@tu-dresden.de

5 Department of Psychology, Dresden University of Technology, Germany
stefan.kiebel@tu-dresden.de

Abstract. Low latency communication is a major challenge when hu-
mans have to be integrated into cyber physical systems with mixed re-
alities. Recently, the concept of negative latency has been coined as a
technique to use anticipatory computing and performing communication
ahead of time. For this, behaviors of communication partners are pre-
dicted, e.g., by components trained through supervised machine learning,
and used to precompute actions and reactions.
In this paper, we approach negative latency as anticipatory networking
with formal guarantees. We first establish a formal framework for model-
ing predictions on goal-directed behaviors in Markov decision processes.
Then, we present and characterize methods to synthesize predictions
with formal quality criteria that can be turned into negative latency. We
provide an outlook on applications of our approach in the settings of
formal methods, reinforcement learning, and supervised learning.

1 Introduction

A key ingredient for modern communication is low latency, enabling a seamless
integration of multimodal information transfer and hence remote robotic control
and human interaction in virtual realities. It is thus not surprising that the
5G mobile standard also focused on ultra-low latency to compete with new
technological demands [40,26]. For instance, towards an implementation of an
internet of skills, where tactile skill information has to be communicated between
sensors and actuators, a round-trip latency of less than one millisecond is an
essential prerequisite [13,40,24,14].
? This work was partially supported by the DFG under the projects EXC 2050/1

(CeTI, project ID 390696704, as part of Germany’s Excellence Strategy) and TRR
248 (see https://perspicuous-computing.science, project ID 389792660).

https://perspicuous-computing.science

2 Dubslaff et al.

However, physical limits for communication in terms of speed of light directly
tell that under those latency requirements there is a boundary at 25 km distances
for an end-to-end communication [53]. In a global world striving towards ubiq-
uitous computing, there is hence a need for more sophisticated techniques to
reduce latency and enable greater distances of low-latency communication [36].

One promising technique is anticipatory computing. Following the seminal
definition by Rosen [33], behaviors of anticipatory systems are characterized by
not only depending on the past but also on beliefs in the future and future needs.
Research on such systems has a long history. Similar concepts have already been
considered, e.g., within speculative execution to speed up processing in parallel
computing [46]. Recently, anticipatory computing gained more and more atten-
tion in the field of software and systems engineering [27]. For instance, automated
driver assistance systems benefit from prediction functionalities to navigate in
common traffic schemes but also reduce the control action space to react timely
on incidents. Here, machine-learning predictors show great performance [44,25].
In the context of mobile devices and communication, anticipatory networking en-
ables to reduce latency [28], especially in combination with edgecloud computing:
Future behaviors of users and computing systems are predicted, consequences
computed, and resources then shifted towards infrastructure that is physically
close to the communication partner. Depending on the actual behaviors, the
speculated results can then directly be transmitted from the edge computing
devices to meet latency requirements. Most prominently, a similar technique has
been introduced in 2019 for Google’s cloud-based gaming service Stadia to pre-
compute game display frames. There, latency lags were mitigated by ahead-of-
time computation of most likely game-playing behaviors, leading to a smoother
gaming experience. Google coined the term negative latency to promote their
variant of anticipatory networking towards reducing latencies. One crucial as-
pect is the clear focus on gaming experience, where incorrect predictions do not
have harmful impacts and thus, there is no need to require any guarantees on
predicted outcomes. The latter however renders Google’s technique not suitable
for safety critical applications such as remote surgery or autonomous driving,
whose functioning crucially depends on reliably low latency.

We argue that guarantees on predictions are key to actually demarcate neg-
ative latency from basic latency reductions through anticipatory networking.
To this end, we propose a more strict understanding of negative latency, which
essentially boils down to the simple relation

negative latency = anticipatory networking + formal guarantees

Guarantees on predictions for anticipatory networking are required to quan-
tify the reliability of systems that depend on low latency, also to meet safety
standards and classify potential failures of the system [32]. Having in mind the
success of machine-learning trained predictors, our variant of negative latency
also opens a new field in formal methods and artificial intelligence.

Towards a Formal Account on Negative Latency 3

In this paper, we develop foundations of a formal framework that captures our
understanding of negative latency. Here, we focus on the formal guarantees that
can be provided for systems modeled as Markov decision processes (MDPs, [31]).
MDPs are an expressive stochastic model having a rich support for formal quan-
titative analysis [4,10] and are also used as underlying model of reinforcement
learning [45]. Towards reasoning about negative latency, we introduce MDPs
with dedicated goal states and model goal-directed behaviors through sequences
of state-action pairs towards reaching goals. For instance, goals could stand for
different surgery tools a doctor intends to grab during remote surgery, where
the hand movements model goal-directed behaviors [34,35]. Further, we intro-
duce predictions as sets of anticipated goals, leading to a general framework of
MDPs with goals and predictions. Since in practical applications many goals are
theoretically possible, we are focusing on so-called k-predictions where only up
to k goals are predicted. For formal guarantees, we impose thresholds on the
quality of predictions, e.g., ensuring that the predicted set of goals is reached
with high probability. We then consider cost annotations in MDPs that formalize
execution and communication timings, e.g., the time of a hand movement dur-
ing grabbing surgery tools. The k-negative latency corresponds to the maximal
time with during any execution a high-quality k-prediction can be made ahead
of reaching a predicted goal. Intuitively, giving the formal guarantees in form
of high-quality predictions, the communication partner can then start reasoning
about consequences of each of the k goals and react ahead of time, leading to
negative latency. In case of the remote surgery example, the remote operator
can already provide advice to the surgery tools ahead of time compensating the
communication latency.

To the best of our knowledge, this view on predictions in MDPs has not yet
been established in the literature. Actually, while our motivation stems from for-
malizing negative latency, our framework can be used in various other settings
where, e.g., cost annotations stand for energy consumed or packages transmit-
ted. We present algorithms for the general case of MDPs with goal predictions to
solve the k-prediction problems, i.e., computing high-quality k-predictions that
optimize costs before reaching goals. Here, we distinguish between additive qual-
ity measures that allow for synthesizing high-quality k-predictions in polynomial
time, and the canonical quality measure of pessimistic goal reachability proba-
bility where already the problem of deciding whether a high-quality k-prediction
exists is NP-complete.

In general, our basic framework models behavior of the communication part-
ner through both nondeterministic and probabilistic choices, leading to overall
pessimistic predictions and negative latency. With more information about un-
derlying strategies and behaviors, e.g., obtained by reinforcement-learning tech-
niques, we can reason about Markov chains as fully probabilistic models with
uncertainty. In combination with well-known confidence measures, this enables to
provide better predictions and negative latencies while maintaining formal guar-
antees. We also illustrate how supervised-learning techniques could be exploited
to trade performance towards higher negative latencies for formal guarantees.

4 Dubslaff et al.

To summarize, we provide a starting point towards formally reasoning about
negative latency and MDPs with goals and predictions and contribute

(1) a generic formalization of predictions and prediction qualities in cost-aware
MDPs that specify goal-directed behaviors,

(2) algorithms to synthesize high-quality (cost-bounded) predictions,
(3) a discussion of applications of our framework with additional knowledge from

strategy estimates and machine learning predictors, and
(4) instantiations of our framework to the setting of negative latency.

Related work. There is a body of research on anticipatory computing [33], an-
ticipatory networking [28], speculative execution [46], and related concepts [27].
Differently, negative latency only recently attracted attention [36,34,35]. How-
ever, we are not aware of any attempt to provide a formal account on negative
latency or to conceptionally demarcate anticipatory networking for reducing la-
tency and negative latency.

Our framework formalizing predictions and negative latency relates to and
uses concepts from cost-bounded reachability analysis in MDPs [47,6,17,18].
The cost-optimal k-prediction problem towards maximizing negative latency is
closely related to the synthesis of resilient strategies in MDPs [8]. The latter
addresses a somehow inverse problem by asking for a strategy to reach goals
within a given cost bound while maximizing performance.

In the context of reinforcement learning, estimates of transition probability
errors and confidence have been extensively studied [45]. Approaches use, e.g.,
Hoeffding bounds [19] with reasoning on lower [2] and upper confidence [9].
In this paper, we mainly follow the approach by Strehl and Littman [41,42]
towards L1-estimations of transition probabilities [50]. Such estimations are also
employed for offline reinforcement learning with safe policy improvement [29,23].

The application of formal methods to machine learning models remains sub-
ject to ongoing research. Previous work in the field of formal methods focused on
probabilistic guarantees for predictions based on training data [48]. In this pa-
per, our aim is not to advance the field in this direction, but sketch how machine
learning predictions also might provide negative latency.

2 Preliminaries

We briefly present our notations on Markovian models and temporal logics with
costs. For more details, see standard textbooks on systems modeling and verifi-
cation [10]. A distribution over a finite set X is a function δ : X → [0, 1] where∑

x∈X δ(x) = 1. The set of distributions over X is denoted by Distr(X), the
power set of X by ℘(X). When clear from the context, we omit brackets of
singleton sets, i.e., write x for {x}.

Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S,Act , P, C, ı) where S and Act are finite sets of states and actions,
respectively, P : S×Act ⇀ Distr(S) is a partial transition probability function,

Towards a Formal Account on Negative Latency 5

C : S×Act → N is a cost function, and ı ∈ S is an initial state. The size of M
is the sum of all set sizes as well as binary encodings of costs and probabilities.
We say that an action α ∈ Act is enabled in state s ∈ S if P (s, α) is defined,
and assume that the set of enabled actions Act(s) is always non-empty. For
(s, α, s′) ∈ S×Act×S we define P (s, α, s′) = P (s, α)(s′) if α ∈ Act(s) and
P (s, α, s′) = 0 otherwise. If for all states s ∈ S there is exactly one action
enabled, i.e., |Act(s)| = 1, then M is called a Markov chain (MC). In this
case we may omit the actions from the definitions. A finite path is a sequence
ρ = s0α0s1α1 . . . sn where P (si, αi, si+1) > 0 for all i = 0, 1, . . . , n−1. The
accumulated cost on ρ is defined by C(ρ) =

∑n−1
i=0 C(si, αi). The set of all paths

in M starting in s is denoted by Paths(M, s) and the fragment of finite paths
by Pathsfin(M, s). We assume that all states in M are reachable from ı, i.e.,
appear in some path starting in ı.

The semantics of the MDP M is given by resolving nondeterministic choices
through strategies, i.e., mappings σ : Pathsfin(M, ·) → Distr(Act) where
σ(s0α0 . . . sn)(α) = 0 for all a 6∈ Act(sn). We call a path ρ as above a σ-path if
σ(s0α0 . . . si)(αi) > 0 for all i = 0, . . . , n−1. The probability of ρ w.r.t. σ and
starting state s ∈ S is defined as Prσs (ρ) =

∏n−1
i=0 σ(s0α0 . . . si)(αi)·P (si, αi, si+1)

if ρ is a σ-path with s0 = s and Prσs (ρ) = 0 otherwise. The probability of some set
of finite σ-paths B ⊆ Pathsfin(M, s), where any path is not a prefix of another,
is defined by Prσs (B) =

∑
ρ∈B Prσs (ρ). Definitions for probabilities extend to

measurable sets of infinite paths in the standard way [49,10].

Property specification. We specify properties on MDPs M as above by for-
mulas in cost-aware linear temporal logic (LTL) [30], given as expressions of the
grammar

ϕ ::= true | a | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕU∼τϕ

where a ranges over a set of atomic propositions AP , ∼ ∈ {≤,≥}, and τ ∈ N.
Here, © stands for the next operator and U∼τ for the cost-constrained until
operator. Further standard operators can be derived, e.g., ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ),
until U ≡ U≥0, eventually ♦ϕ ≡ trueUϕ, or globally �ϕ ≡ ¬♦¬ϕ. In this paper,
we consider AP as the set of states of M and provide the semantics of an LTL
formula ϕ as the set JϕK of infinite paths ρ = s0α0s1α1 . . . in M for which
s0s1 . . . satisfies ϕ, written ρ |= ϕ. For a state s ∈ S we write s |= ϕ if for all
infinite ρ ∈ Paths(M, s) we have ρ |= ϕ. We also use set notations to represent
disjunctions of atomic propositions, e.g., ρ |= AUB for A,B ⊆ S for all paths ρ
that reach a state in B and only visit states of A on the way to B.

For any strategy σ, an LTL formula ϕ constitutes a measurable set JϕKMσ

of infinite σ-paths that satisfy ϕ [49]. To this end, for a state s ∈ S we write
PrσM,s

(
ϕ
)

for PrσM,s

(
JϕKMσ

)
. Best- and worst-case probabilities on LTL prop-

erties are captured by ranging over possible resolutions of nondeterminism:

Prmin
M,s

(
ϕ
)

= inf
σ

PrσM,s

(
ϕ
)

and Prmax
M,s

(
ϕ
)

= sup
σ

PrσM,s

(
ϕ
)
.

Quantiles. Quantiles are defined as optimal values q such that the probability
of a random variable Q exceeding q is beyond a given threshold. In our setting,

6 Dubslaff et al.

we consider quantiles minimizing costs (such as time consumed) in MDP models
w.r.t. worst- and best-case resolution of nondeterminism [47,6]. Let M be an
MDP as above, ϕ and ψ LTL formulas over AP without cost constraints, ϑ ∈
[0, 1] be a probability threshold, and s ∈ S. Then, the lower-bound quantile with
respect to ϑ, ϕ, and ψ in s is defined as

max
{
c ∈ N | Prmin

M,s(ϕU
≥cψ) ≥ ϑ

}
. (1)

The above quantile specifies the minimal costs c required for paths that start
in s to guarantee a probability greater than ϑ for reaching a state where ψ
holds, solely via states that satisfy ϕ and surely spending at least c. Upper-
bound quantiles are defined accordingly, i.e.,

min
{
c ∈ N | Prmin

M,s(ϕU
≤cψ) ≥ ϑ

}
. (2)

Quantiles can be computed using a back-propagation approach, leading to quan-
tile values in all states of the given MDP [6].

3 Predictions in Markov Decision Processes

To model goal-directed behaviors of systems or humans and to reason about
situations where predictions about targeted goals can be made, we establish a
formal framework of MDPs with goals and cost predictions. For this, we fix an
MDP M = (S,Act , P, C, ı) throughout the section.

MDPs with goals. Let G ⊆ S be a finite set of goal states. The pair (M, G) is
called an MDP with goals if goal states are reached almost surely for any strategy
and state, i.e., (M, G) is an MDP with goals iff Prmin

M,s(♦G) = 1. MDPs with
goals describe goal-directed behavior starting in the initial state ı until reaching
a goal state. After reaching such a goal state, the behavior continues towards
a new (possibly different) goal. To this end, each path in (M, G) operates in
several phases, constituting goal-directed runs that start and end in a state of
Init = {ı} ∪G. We define the set of runs by

Runs(M, G) = {ρ ∈ Paths(M, Init) | ρ |= ©♦G}

Example 1. Let us introduce our running example of a human grabbing ei-
ther a plate, an espresso cup, or a coffee cup [35]. We model the goal-directed
hand movement by an MDP with goals (S,Act , P, C, 211, G) over the state
space S = {2, 1, 0}2 × {1, 0}, goal states G = {000, 001, 021}, action space
Act = {move, close, open, turn}, and transition probabilities and costs as de-
picted in Figure 1. The first state component models how close the user’s hand
is situated relative to the object: far (2), close (1), or touching (0). The second
state component models the hand pose: wide (2), normal (1), or narrow (0). The
third state component stands for the hand position vertical (1) or horizontal
(0). Grabbing an object starts far from the object, with a normal vertical hand

Towards a Formal Account on Negative Latency 7

221

211

201

121

111

101

021
coffee

011

001

espresso

100

110

000
plate

010

150: move
0.8

0.2

50: move

120: move
0.5

0.5

50: move

160: move
0.6

0.4

50: move

40: move

50: move

80
:

cl
os

e

70
:

cl
os

e

70
:

cl
os

e

70
:

cl
os

e

90
:

op
en

80
:

op
en

70: turn

70: turn

Fig. 1. Example MDP with goals of a grabbing scenario

pose (cf. initial state “211”). Costs of transitions are annotated in front of ac-
tion names in Figure 1, modeling the time in milliseconds to perform the task.
Moving at different speeds is modeled via probabilistic transitions towards either
“close to” or “touching” the object. Essentially, the user can follow two strate-
gies to grab the desired object: either first moving and then adjusting the hand
pose towards the needs of grabbing the object (closing, opening, or turning) or
the other way around. Note that turning the hand towards horizontal position
directly at the beginning implies that the user targets a plate (goal “000”), since
grabbing an espresso or coffee cup requires a vertical hand pose (goals “001” and
“021”, respectively). Further, observe that touching the object in a normal ver-
tical pose (state “011”) does not allow for opening the hand anymore, required
to grab the coffee cup. After a goal is reached, i.e., one of the objects is touched
and consequently grabbed, a new phase starts by returning to the initial state
(indicated by the outgoing arrows of the three goals).

To reason about time-dependent properties, let us consider the LTL formula
ϕ = ♦≥60plate where plate stands for the state “000” (see Figure 1). Then
Prmin

M,s(ϕ) ≥ 0.9 only holds in states “110” and “010”, since from all other states,
either less than 60 ms are spent to reach the goal state “000” (state “100”) or
there is a strategy for the human to not grab the plate (e.g., deciding to go for
espresso in state “101” by moving forward).

Predictions. To formalize predictions on goal-directed behaviors in MDPs with
goals, we introduce prediction mappings π : S → ℘(G) that assign a set of pre-
dicted goals to states. Predictions are ordered via goal inclusion, i.e., π ⊆ π′ iff
π(s) ⊆ π′(s) for all s ∈ S. We identify with supp(π) the set of states where a
prediction is made, i.e., supp(π) = {s ∈ S | π(s) 6= ∅}.

8 Dubslaff et al.

Intuitively, predictions are made within the goal-directed phases of (M, G),
i.e., π(s) 6= ∅ in some state s ∈ S then corresponds to predicting the reachability
event ϕπ(s) = (¬G)Uπ(s), i.e., reaching the set of goal states in π(s) without
passing any other goal state. Note that with this understanding, for a meaningful
prediction it should hold that π(s) = {s} for all s ∈ G.

3.1 Prediction Quality Criteria

Obviously, not all prediction mappings are sensible, e.g., when a goal is not
reachable but predicted. Also predicting all reachable goals or none in every state
does not provide any useful information. We are mainly interested in predictions
with at least one prediction in each goal-directed phase of the MDP with goals:

Definition 1 (Proper prediction). A prediction π : S → ℘(G) for (M, G)
is called proper if for all s0α0s1 · · · sn ∈ Runs(M, G) with n > 1 there is i ∈
{1, . . . , n− 1} such that π(si) 6= ∅.

Within proper predictions we further would like to predict as few goals as
possible but with fulfilling certain quality criteria, e.g., predicting with high
confidence. For this, we introduce prediction quality measures.

Definition 2 (Prediction quality). A prediction quality for (M, G) is a
mapping µ : S×℘(G) → [0, 1] where µ(s,∅) = 0 for all s ∈ S. We call µ additive
if µ(s,X) + µ(s, x) = µ(s,X ∪ {x}) for all s ∈ S, X ⊆ G, and x ∈ G\X.

Intuitively, values µ(s,X) stand for the quality of a goal prediction X ⊆ G in
some state s ∈ S. Note that additivity implies monotonicity, i.e., µ(s,X) ≤
µ(s, Y) for all X ⊆ Y ⊆ G and s ∈ G. We relate different quality measures by
pointwise comparison, i.e., for two quality measures µ and µ′, we write µ ≤ µ′

iff µ(s,X) ≤ µ′(s,X) for all s ∈ S and X ⊆ G.
Having full knowledge about (M, G), the canonical candidate for prediction

quality is given by the worst-case reachability probability of predicted goals.
Formally, for s ∈ S and X ⊆ G this instance can be defined by

µϕ(s,X) = Prmin
M,s

(
ϕX

)
= Prmin

M,s

(
(¬G)UX

)
(3)

Note that this prediction quality can be computed in polynomial time using stan-
dard methods for model checking MDPs [10]. But also other quality measures
could well be imagined, e.g., when uncertainty on the MDP probabilities or ex-
ternal influences are present. Instances we will discuss in this paper include, e.g.,
confidence measures in MDPs with goals learned by model-based reinforcement
learning (see Section 4.1) or confidence on predictors trained with supervised
machine learning (see Section 4.2).

Remark 1. The canonical prediction quality µϕ is not additive. To see this, con-
sider S = {ı, g, g′}, G = {g, g′}, Act = {α, α′} and P (ı, α, g) = P (ı, α′, g′) = 1
being the only transitions. Then

Prmin
M,ı

(
ϕg

)
= Prmin

M,ı

(
ϕg′

)
= 0 but Prmin

M,ı

(
ϕ{g,g′}

)
= 1.

Towards a Formal Account on Negative Latency 9

Algorithm 1: SynthKMin – Synthesize µϑ-state k-prediction
input : MDP with goals (M, G), k ∈ N, prediction quality µ, ϑ ∈ [0, 1]
output: A µϑ-state k-prediction π or false if none exists

1 forall s ∈ S do
2 π(s) := ∅ // initialize prediction
3 while µ

(
s, π(s)

)
< ϑ and |π(s)| ≤ k do

4 xmax := argmaxx∈G\π(s)µ
(
s, x

)
// add highest quality goal

5 π(s) := π(s) ∪ {xmax}
6 if µ

(
s, π(s)

)
< ϑ or |π(s)| > k then

7 π(s) := ∅ // no greedy prediction at s
8 if µ is not additive then
9 forall X ⊆ G, |X| ≤ k do

10 if µ(s,X) ≥ ϑ then
11 π(s) := X // non-greedy prediction found at s
12 break

13 if there is ρ ∈ Runs(M, G) with ρ 6|= ©
(
(¬G)U(supp(π)\G)

)
then

14 return false // there is no proper k-prediction
15 return π

Nevertheless, µϕ is monotonic since adding goals can only increase the probabil-
ity of reaching goals independent from the chosen strategy.

State-based quality threshold criterion. A natural way of stating require-
ments on overall prediction quality of a system is by means of thresholds on
qualities of each prediction state.

Definition 3. Given a quality measure µ and a threshold ϑ ∈ [0, 1], a proper
prediction π for (M, G) is called a µϑ-state prediction if for all states s ∈ S
with π(s) 6= ∅ we have

µ
(
s, π(s)

)
≥ ϑ . (4)

π is complete if for all µϑ-state predictions π′ we have supp(π′) ⊆ supp(π) and
π(s) ⊆ π′(s) for all s ∈ supp(π′).

Note that every µϑ-state prediction has to be proper and hence, there is at least
one state s ∈ S that has to meet the threshold criterion (4). For a prediction to
be complete, it has to make a prediction in as many states as possible, with a
minimal set of goals in each state (w.r.t. subset inclusion).

3.2 k-Predictions

In practice, the number of goals in a system might be huge, posing challenges
when predictions have to be processed timely. Towards meaningful predictions
and to deal with limited resources when anticipating predicted goals, we hence
mainly consider predictions with a limited number of goals. Formally, given a
goal bound k ∈ N, we call a prediction π a k-prediction if |π(s)| ≤ k for all s ∈ S.

10 Dubslaff et al.

µϑ-state k-prediction decision problem
For an MDP with goals (M, G), k ∈ N, prediction quality µ, and threshold
ϑ ∈ [0, 1], decide whether there is a µϑ-state k-prediction.

Clearly, in case of a positive answer, the goal is to synthesize complete predic-
tions. A simple greedy scheme can compute a complete µϑ-state k-prediction
if µ is additive. Algorithm 1 implements this scheme by iterating through all
states checking whether in those states a k-prediction can be made that fulfills
the state quality criterion. Note that Line 4 involves a nondeterministic choice
in case at least two goals can be predicted with same quality. Further, when µ is
not additive, the greedy scheme might not succeed in finding a prediction with at
most k goals in some state, requiring to possibly check predictions exhaustively
(see Line 8). After computing prediction sets for each state, π is a k-prediction.
However, this prediction might not be proper, in which case there is no µϑ-state
k-prediction (see Definition 1) and the algorithm returns false (Line 13).

Theorem 1. Let (M, G) be an MDP with goals, k ∈ N, µ a prediction quality
that can be computed in polynomial time, and ϑ ∈ [0, 1]. If there is a µϑ-state k-
prediction for (M, G), Algorithm 1 returns one taking at most exponential time.
For additive µ, the prediction is complete and computed in polynomial time.

Example 2. Let us illustrate predictions on our running example (see Exam-
ple 1), where we abbreviate by plate the state “000”, by espresso the state
“001”, and by coffee the state “021”. Application of Algorithm 1 for k = 2,
ϑ = 0.9, and the canonical prediction quality µϕ(s,X) = Prmin

M,s

(
(¬G)UX

)
yields a complete µϑ-state 2-prediction π:

π(211) = π(111) = ∅
π(000) = π(100) = π(010) = π(110) = {plate}
π(001) = π(011) = {espresso}
π(021) = π(221) = π(121) = {coffee}
π(201) = π(101) = {plate, espresso}

Note that in the initial state “211” and in “111” there are strategies that even-
tually open the hand, leading almost surely to goal coffee, eventually turn,
leading almost surely to goal plate, or only move and close without turning,
leading almost surely to espresso. Thus, by ranging over all possible strategies
for checking our quality criteria, we see that there is no µϑ-state 2-prediction
possible in those states (cf. first line above). Singleton predictions are trivial for
goal states but also those that can reach only a single goal.

Let us more elaborate on the case where the greedy computation scheme in
Algorithm 1 is not successful and one has to check possible sets with at most
k goals whether their prediction quality exceeds the quality threshold. In fact,
while in Example 2 this situation did not arise, this can well happen for the
canonical prediction quality µϕ (see Remark 1).

Towards a Formal Account on Negative Latency 11

Example 3. Let S = {ı, g, h, h′}, G = {g, h, h′}, Act = {α, α′}, and transitions
are given by P (ı, α, g) = P (ı, α′, g) = 0.3, P (ı, α, h) = P (ı, α′, h′) = 0.6, and
P (ı, α, h′) = P (ı, α′, h) = 0.1. Then, Algorithm 1 with k = 2, the canonical
prediction quality µϕ, and ϑ = 0.5 first adds goal g in state s, since

µϕ(ı, g) = 0.3 ≥ µϕ(ı, h) = µϕ(ı, h
′) = 0.1.

After adding goal h or h′, we obtain π(ı) = {g, h} or π(ı) = {g, h′} with |π(ı)| =
k = 2, where µϕ

(
ı, π(ı)

)
= 0.4, not exceeding ϑ. This leads the algorithm to

invoke a subset search, finally returning the complete µϕϑ-state k-prediction π
with π(ı) = {h, h′} since µϕ

(
ı, {h, h′}

)
= 0.7 ≥ ϑ.

This example already hints at the µϕϑ-state k-prediction decision problem to be
not easily solvable. In fact, this problem is NP-complete, which can be shown
by a reduction from the minimum hitting set problem (MHS) [15].

Theorem 2. The µϕϑ-state k-prediction decision problem is NP-complete.

3.3 Cost-aware Predictions

In many practical applications it is not only relevant to reach a goal, but also
to do so with meeting cost constraints. For instance, when costs are given by
means of energy and we are in a state with low battery, it is important to also
take the energy budget into account when predicting goals to be reached. We
hence extend our notion of prediction quality (cf. Definition 2) to assess costs
for reaching a predicted goal.

Definition 4 (Cost prediction quality). A cost prediction quality for (M, G)
is a mapping ν : N × S × ℘(G) → [0, 1] where for all c ∈ N the mapping
νc : S × ℘(G) → [0, 1] defined by νc(s,X) = ν(c, s,X) for all s ∈ S, X ⊆ G
is a prediction quality. If for all c, c′ ∈ N we have that c ≤ c′ implies νc ≤ νc′ ,
we call ν increasing and likewise, if c ≤ c′ implies νc ≥ νc′ , we call ν decreasing.

Intuitively, increasing measures shall be used when reaching goals at high costs is
preferred, e.g., when charging a battery if costs model energy or if time is seen as
cost and goal-directed behavior tries to extend the time until some maintenance
operation. Decreasing measures are relevant when lowering costs is preferable,
e.g., when draining a battery in case of energy consumption or to increase per-
formance if costs stand for execution times.

Natural candidates for cost prediction qualities are cost-bounded reachability
probabilities. Here, increasing and decreasing measures ν≤ and ν≥, respectively,
can be specified for all s ∈ S, c ∈ N, and X ⊆ G by

ν≤c(s,X) = Prmin
M,s

(
(¬G)U≤cX

)
(5)

ν≥c(s,X) = Prmin
M,s

(
(¬G)U≥cX

)
. (6)

Cost-optimal k-predictions. Synthesizing νcϑ-state k-predictions for a fixed

12 Dubslaff et al.

Algorithm 2: Synthesize cost-maximal νcϑ-state k-prediction
input : MDP with goals (M, G), k ∈ N, decreasing cost prediction quality ν,

quality threshold ϑ ∈ [0, 1]
output: A cost-maximal νcϑ-state k-prediction π or false if there is none

1 cmax := 1
2 while SynthKMin

(
M, G, k, νcmax , ϑ

)
do

3 cmax := 2 · cmax

4 c := cmin := bcmax/2c
5 while cmax − cmin > 1 do
6 c := b cmax+cmin

2
c

7 if SynthKMin
(
M, G, k, νc, ϑ

)
then

8 cmin := c
9 else

10 cmax := c

11 return c, SynthKMin
(
M, G, k, νc, ϑ

)

cost bound c could possibly be done by Algorithm 1 (see the definition of cost
prediction quality). A more interesting problem is to not fix a cost bound but
to determine the minimal or maximal c for increasing or decreasing quality
measures, respectively, for which there is a νcϑ-state k-prediction.

Definition 5. Let (M, G) be an MDP with goals, k ∈ N, ν a cost prediction
quality, and ϑ ∈ [0, 1]. A prediction π is a cost-maximal (cost-minimal) νϑ-state
k-prediction if there is a c ∈ N such that π is a νcϑ-state k-prediction and for
all c′ > c (c′ < c) there is no νc′ϑ-state k-prediction.

If also a synthesis of such cost-optimal k-predictions can be achieved, this then
also provides predictions that (to some extent) predict costs to be spend for
reaching goals. Towards a synthesis algorithm, let us first note that computing
the minimal and maximal cost bounds for canonical cost qualities (5) and (6),
respectively, and exceeding a quality threshold ϑ corresponds to classical quan-
tile computations [6]. We use similar techniques by exploiting the increasing
or decreasing property of cost quality measures and performing an exponential
search followed by a binary search on cost bounds while stepwise invoking Algo-
rithm 1. Algorithm 2 implements the cost-maximizing case for decreasing cost
quality measures, assuming there is some cost bound cmax such that there is no
νcmax

ϑ-state k-prediction. First, we perform an exponential search, i.e., the cost
bound cmax is exponentially increased until we cannot synthesize any νcmax

ϑ-
state k-prediction anymore (cf Line 3). At Line 4 we then have the situation
where there is such a prediction for cmin but not for cmax. Shrinking the interval
[cmin, cmax] then is the purpose of a binary search (see Line 6).

Proposition 1. Let (M, G) be an MDP with goals, ν an additive decreasing cost
prediction quality, ϑ ∈ [0, 1], and k ∈ N. Then if there is a ν0ϑ-state k-prediction
and a cost bound cmax ∈ N for which there is no νcmax

ϑ-state k-prediction, then
Algorithm 2 returns a cost-maximal νϑ-state k-prediction.

Towards a Formal Account on Negative Latency 13

A similar algorithm as Algorithm 2 and proposition can be also established for
increasing cost prediction qualities in a straight-forward manner, starting with
an exponential search until a prediction can be synthesized and then a binary
search with flipped roles of cmax and cmin.

Example 4. Continue Example 2 with the canonical decreasing cost prediction
quality ν≥ (6). Algorithm 2 first performs an exponential search until cmax = 64,
where no prediction on the run 211 move−→ 111 open−→ 121 move−→ 021 can be made since
from “121” the goal coffee is reached in less than 64 ms and this is the only non-
trivial 2-prediction state on this path in the unconstrained case (cf. Example 2).
The binary search then terminates at the maximal cost bound c = 50 such that
there is a complete ν≥500.9-state 2-prediction

π(211) = π(111) = π(000) = π(001) = π(021) = π(100) = ∅
π(010) = π(110) = {plate}
π(011) = {espresso}
π(221) = π(121) = {coffee}
π(201) = π(101) = {plate, espresso}

Observe that there is no prediction in goal states, since non-zero cost prediction
qualities (6) require costs invested while passing through non-goal states only.

3.4 Negative Latency

Consider a communication system modeled as MDP with goals in which costs
correspond to timings of system executions and transmissions. Then, anticipa-
tory networking [36] can be implemented through predictions in system states,
fitting well in our formal framework developed in the last sections. Following
the principle of negative latency as anticipatory networking with guarantees as
we motivated in the introduction, we illustrate in this section how to exploit
prediction guarantees to turn anticipatory networking into negative latency.

Intuitively, we define negative latency as the amount of time a goal can be
predicted with high confidence, i.e., predicting goals with meeting prediction
quality criteria. Formally, let (M, G) = (S,Act , P, C, ı, G) be an MDP with
goals where the cost function C assigns (non-zero) execution times to state-
action pairs. Negative latency can then be established through cost bounds of
νcϑ-state k-predictions (see Definition 5).

Definition 6 (Negative latency). For k ∈ N, decreasing cost prediction qual-
ity ν, and ϑ ∈ [0, 1] the MDP with goals (M, G) has νϑ-state k-negative latency

` = max{c ∈ N | there is a νcϑ-state k-prediction}.

When an MDP with goals has k-negative latency `, then at minimum ` ahead
of time there is a prediction that guarantees with high confidence to reach the
predicted goals. To this end, the impact of at most k predicted goals can be an-
ticipated and precomputed ` time ahead, used to reduce latency by `. Practically

14 Dubslaff et al.

most relevant is the case where k = 1, i.e., the time that one single outcome can
be predicted ahead of time [34].

The possible negative latency in given MDPs and predictions as implemen-
tations could be computed by Algorithm 2. The inverse synthesis problem might
be also relevant: given a target negative latency ` and compute the smallest k
such that there is a ν`ϑ-state k-prediction. This can be achieved by a simple
algorithm similar to Algorithm 2 but performing a binary search on k.

4 Machine Learning for Negative Latency

Nondeterminism in the system’s underlying MDP model is commonly inter-
preted as environmental impact, e.g., human input as in our running example,
or unknown behavior from the side of the system. To account for all possible
environmental and unknown influences, still providing strict quality guarantees
on predictions, we hence quantified over all possible strategies in our canonical
quality measures ν≤c (5) and ν≥c (6), covering all worst-case scenarios. How-
ever, this view is overly conservative as neither a human user nor the underlying
system specifically “design” their strategy in such a way to defy possible predic-
tions. Instead, another perspective is to consider user’s strategies as memoryless
and randomized but hidden, i.e., unknown to the system communicating with
the user [5,9]. This implies that the underlying model does not include any non-
determinism anymore but instead also transitions of which we do not know the
exact transition probability.

In this section, we describe how machine-learning predictors can be used to
resolve nondeterminism by probabilism with uncertainty that follow the canon-
ical quality criteria. For this, we first utilize results from reinforcement learning
to estimate strategies from sample runs on the system, on which the machinery
of the last section can be directly applied due to the same underlying concepts
of MDPs. Second, we showcase how supervised machine learning can be used to
predict goals in system states based on continuous sensor data, implementing an
extension of the abstract predictions on MDPs we introduced.

4.1 Strategy Estimation

By integrating information from sample data on an underlying strategy, we can-
not expect to obtain exact transition probabilities but estimations only. To this
end, we define a formalism of sets of MCs to reflect this uncertainty.

Definition 7 (L1-Markov chain). An L1-Markov chain (L1MC) Ce is a
Markov chain C along with an error function e : S → R.

Given an MC C = (S, P,C, ı) and error function e, we call an MC C′ = (S, P ′, C, ı)
an instantiation of Ce if ‖P (s)−P ′(s)‖1 ≤ e(s) for all s ∈ S. The set of all instan-
tiations of an L1MC Ce is denoted by [Ce]. Intuitively, an L1MC Ce represents
the set of all MCs where the L1-distance between their transition probabili-
ties in each state s is bounded by e(s). The semantics of L1MCs arises from

Towards a Formal Account on Negative Latency 15

first picking an instantiation C′ ∈ [Ce] and then considering all infinite paths
on C′ as within standard Markov chains, similar to the uncertain Markov chain
(UMC) semantics in the setting of interval Markov chains (IMCs) [37,12,3]. In
the framework of IMCs, another common semantics is the interval MDP se-
mantics, where an adversarial player chooses the transition probabilities at each
step [37,12,3]. However, considering our assumption of the existence of a fixed
memoryless strategy we do not consider this variant here.

Strategy estimation. To represent past information gathered through prior
knowledge or observations from an underlying MDP model M = (S,Act , P, C, ı),
we consider a data set D ⊆ Paths(M, ı) of paths observed in M. We denote
by #D(s,A) the number of occurrences of an action from the set A ⊆ Act
being executed in state s ∈ S in paths of D. As we assume there is a fixed and
memoryless strategy σ that is employed in the system, even observations of single
transitions without history are sufficient to estimate σ by a set of strategies ΣD.
We do this by an S-rectangular set of strategies, i.e., we estimate σ(s) by a set
of distributions ΣD(s) ⊆ Distr

(
Act(s)

)
for each s ∈ S and construct ΣD as the

cross product of all ΣD(s).
Further, we introduce an error tolerance δ ∈ R to formalize uncertainty that

σ(s) lies within any (non-trivial) ΣD(s). To provide guarantees on the latter we
require that σ ∈ ΣD with probability at least 1− δ. As we aim for S-rectangular
estimations, we split the error tolerance δ uniformly over all states, defining
δT = δ/|S|. For all states s ∈ S we then can utilize a result of Weissman et al.
[50] to guarantee that σ(s) ∈ ΣD(s) with probability at least 1− δT :

Definition 8 (L1-strategy estimation). Let M be an MDP and D be a set
of runs on M sampled from common fixed strategy σ. For a given error tolerance
δT ∈ (0, 1) we define the L1-strategy interval estimate ΣD for all s ∈ S by

ΣD(s) =

{
σ̂(s) ∈ Distr(Act(s))

∣∣ ‖σ̂(s)− p̂(s)‖1 ≤

√
2(ln(2|S| − 2)− ln δT)

#D(s,Act)

}

where p̂(s)(α) = #D(s,α)
#D(s,Act) .

This strategy estimation can be included into our framework towards L1MCs
estimates of MDPs: Given an MDP M with a fixed, but hidden, strategy σ that
gives rise to the induced MC Mσ. Then for an error tolerance δ we can construct
an L1MC Me

D from an MC MD that resolves nondeterminism through D such
that Mσ is an instantiation of Me

D with probability at least 1− δ.

Definition 9 (MDP estimation). Let M = (S,Act , C, P, ı) be an MDP, D ⊆
Paths(M, ı) sampled from a fixed strategy σ, and δ ∈ (0, 1) an error tolerance.
The D-estimate of M is the L1MC Me

D with MD = (S ∪ SAct , Ĉ, P̂ , ı) where
SAct = {sα | s ∈ S, α ∈ Act(s)}, and where for all s, s′ ∈ S ∪SAct cost estimates

16 Dubslaff et al.

Ĉ are defined by Ĉ(s) = C(s, α) if s = sα ∈ SAct and Ĉ(s) = 0 otherwise,
probability estimates P̂ and the error function e are defined by

P̂ (s, s′) =

#D(s,α)

#D(s,Act(s)) if s ∈ S, s′ = sα ∈ SAct and #D
(
s,Act(s)

)
> 0

1/|Act(s)| if s ∈ S, s′ = sα ∈ SAct and #D
(
s,Act(s)

)
= 0

P (s, α, s′) if s = sα ∈ SAct and s′ ∈ S

0 otherwise

e(s) =

0 if s ∈ S

|Act(s)| if s = sα ∈ SAct and #D(s,Act) = 0√
2(ln(2|S|−2)−ln δT)

#D(s,Act) if s = sα ∈ SAct and #D(s,Act) > 0

Intuitively, we replace each transition in M by two transitions in MD: The
first one estimates the probability that an action α is taken with an admissible
L1-error as in the L1-strategy estimation (cf. Definition 8), while the second
performs the original transition of M without any error. For the first, we take
care of the case where #D

(
s,Act(s)

)
= 0, by setting the error function to a

value such that every transition function is a valid instantiation (see second case
of the P̂ definition). The newly introduced states sα serve as the intermediate
states between these transitions such that any run in MD alternates between
states from S and SAct . Further, intermediate states also encode taken actions,
leading to a well-defined cost function that preserves accumulated rewards.

Note that each instantiation C ∈ [Me
D] corresponds to the MDP M under a

strategy σC ∈ ΣD. Since the probability that the hidden strategy is within the
L1-strategy estimate, i.e., σ ∈ ΣD, is at least 1− δ, we immediately obtain that
the probability that an Mσ with stutter steps has an instantiation of Me

D is
also at least 1 − δ. Here, for including stutter steps in Mσ, for each transition
s α−→ s′ in M there is a finite path s . . . s′ in C that does not contain any other
states from S, and that has the same probability mass and accumulated cost.

Proposition 2. Let M be an MDP, D be a set of runs on M sampled from a
fixed strategy σ, and δ ∈ (0, 1) an error tolerance. Then with probability at least
1− δ there is a C ∈ [Me

D] that is Mσ up to stutter steps.

Example 5. Let us again consider our running example (see Example 1). We have
three states in which nondeterministic choices can be made: states “211”, “101”,
and “111”. Assume we have observed a total of 100 runs in the environment and
made the following observations:

state s #D(s, α) for action α: #D(s,Act)

close move open turn
210 10 40 50 - 100
101 - 7 - 3 10
111 1 14 9 1 25

Towards a Formal Account on Negative Latency 17

For a given error tolerance of δ we can then construct the MDP estimation
via an L1MC. In Figure 2 we show the MC C of the L1MC Me

D for this specific
example. Note that we omit auxiliary states here if they only had a deterministic
successor anyway, e.g., state “211close” as its only successor would be “201”.

221 221move

211 211move

201 201move

121

111

101

021
coffee

011

001

espresso

100

110

000
plate

010

150: 1
0: 0.8

0: 0.2

50: 0.3

120: 0.4
0: 0.5

0: 0.5

50: 0.56

160: 1
0: 0.6

0: 0.4

50: 1

40: 1

50: 1

80
:

0.
1 70

:
0.

04

70
:

1

70
:

1

90
:

0.
5

80
:

0.
36

70: 0.7

70: 0.04

Fig. 2. Example MC of a grabbing scenario with estimated strategy

For δ = 0.1 we obtain an error tolerance δT = 1
30 for each of the three states

in which we estimate the strategy. The corresponding error function e is then
computed as in Definition 9 where all the non-zero entries are

e(211) ≈ 0.264, e(101) ≈ 0.692, and e(111) ≈ 0.589.

k-Predictions in L1MCs. We can consider our framework of prediction in
MDPs (see Section 3) in the setting of L1MCs. For this, we take quality measures
that quantify over all possible instantiations of an L1MC instead of all strategies
of an MDP as done for canonical qualities (3), (5), and (6). Formally, for an
L1MC with goals (Me

D, G), we define the prediction quality measure µ̂ϕ : S ×
℘(G) → [0, 1] for all states s ∈ S and goals X ⊆ G by

µ̂ϕ(s,X) = min
C∈[Me

D]
PrC,s(ϕX) = min

C∈[Me
D]

PrC,s
(
(¬G)UX

)
.

Similarly, for ∼ ∈ {≤,≥} we define cost prediction qualities as

ν̂∼c(s,X) = min
C∈[Me

D]
PrC,s

(
(¬G)U∼cX

)
.

Note that in case the data set is empty, i.e., no information about the resolu-
tion of the nondeterminism is available, the (cost) prediction quality as well as

18 Dubslaff et al.

the quality threshold agree for an MDP M and the corresponding L1MC Me
D

estimating M. Intuitively, this is due to the corresponding transition function
corresponding to an L1MC that is an instantiation of Me

D, no matter by which
(possibly probabilistic) scheduler the nondeterminism is resolved.

In that sense, we see that even in general and with using canonical quality
measures, taking on the L1MC view on MDPs is beneficial, since even without
any data collected the qualities calculated are equivalent:

Lemma 1. Let (M, G) be an MDP with goals and Me
D an L1MC that estimates

M as in Definition 9 with the empty data set D = ∅. Then, for all states s ∈ S,
goals X ⊆ G, ∼ ∈ {≤,≥}, and cost thresholds c ∈ N

µ̂ϕ(s,X) = Prmin
M,s

(
(¬G)UX

)
and ν̂∼c(s,X) = Prmin

M,s

(
(¬G)U∼cX

)
.

Observe that with using L1MCs, however, we introduce additional uncertainty
as we can only guarantee with probability 1 − δ that the MC Mσ induced by
the underlying hidden strategy σ is actually an instantiation of the L1MC Me

D.
However, when lifting the definition of quality thresholds to L1MCs, we can
incorporate this error term:

Definition 10. Given an MDP with goals (M, G) and an error tolerance δ ∈
[0, 1], let Me

D be the L1MC estimating M through data D ⊆ Paths(M, ı). Fur-
ther, given a quality threshold ϑ ∈ [0, 1], a cost bound c ∈ N, and cost bound
c, a proper prediction π for (MD, G) is called a ν̂∼cϑδ-state prediction where
∼ ∈ {≤,≥} if for all states s ∈ S with π(s) 6= ∅ we have

(1− δ) · ν̂∼c

(
s, π(s)

)
≥ ϑ . (7)

Proposition 3. Given an MDP with goals (M, G) and a ν̂∼cϑδ-state prediction
π(s) as in Definition 10, then PrMσ,s

(
(¬G)U∼cX

)
≥ ϑ.

Intuitively, (1−δ) is the (minimal) probability that the underlying MC Mσ is an
instantiation of Me

D. This is feasible when we see ν̂ is related to the worst-case
reachability probabilities of goals, e.g., being one of the canonical cost predictions
ν̂≤c or ν̂≥c. Then, ν̂c

(
s, π(s)

)
is the minimal probability over all instantiations

to fulfill the prediction in state s with given cost constraint depend on c.

Example 6. Let us continue Example 5 by computing a ν≤250ϑδ-state 1-prediction
in the initial state “211” with δ = 0.1 while maximizing ϑ. To do this, we compute
ν≤250(211, x) for all x ∈ {plate, espresso, coffee} by constructing a minimizing
instantiation for each goal. Here, we take an adversary role trying to minimize
the probability to reach each goal state.
(plate): Since 0.1 ≤ e(211)/2 and 0.08 ≤ e(111)/2, there is an instantiation
where plate is unreachable, obtainable by minimizing the probability from tran-
sitions to states “201”, “101”, and “110”. Hence, ν̂≤250(211, coffee) = 0.
(espresso): As 0.3 ≤ e(101)/2 we have instantiations with P (101, espresso) =
0. In an effort to minimize the reachability probability of espresso we pick an in-
stantiation where P (211, 211move) is as small as possible. To ensure that the MC

Towards a Formal Account on Negative Latency 19

is still an instantiation, we must have P (211, 211move) ≥ 0.4− e(211)/2 ≈ 0.268.
Similarly, we minimize P (111, 011) ≥ 0.56 − e(111)/2 ≈ 0.265. Hence, we have
an instantiation with only one path reaching espresso and by evaluating its
probability we obtain ν̂≤250(211, espresso) = 0.268 · 0.265 = 0.071.
(coffee): The path via states “221” and “121” violates our cost constraint and
is thus not relevant to our example. As before, we minimize P (111, 121) ≥
0.36−e(111)/2 ≈ 0.065. For state “211” we would like to minimize the transition
probability to both states “111” and “221”. However, as the error function only
allows a fixed L1 deviation of the transition function, we can only minimize one of
the two. In this case we prefer to minimize P (211, 221) ≥ 0.5− e(211)/2 ≈ 0.368
as the probability to reach coffee is greater from “221” than from “111”. This
leaves two non-zero paths reaching coffee under the given cost constraints from
which we can compute ν̂≤250(211, coffee) = 0.368 · 0.4 + 0.4 · 0.065 ≈ 0.173.

Thus, we have that the goal coffee is a ν≤250ϑδ-state 1-prediction in state
“211” where δ = 0.1 and ϑ ≈ 0.173 is maximal. Notice the difference to the
original setting where no 1-prediction with ϑ > 0 could be made in the initial
state. This in fact matches our intuition: If we have observed that a person
has often grabbed the coffee in the past, we might predict with some level of
confidence that they will do so again.

Computing ν̂∼cϑδ-state k-predictions. Notice that a high error tolerance
δ implies that the set of instantiations also grows, which in turn makes cost
prediction quality estimates ν̂ smaller. Finding the optimal value of δ, i.e., the
value that maximizes the left-hand side of (7) seems like a hard task for which
we do not see a direct procedure. However, for a given δ it is straight forward to
compute Me

D by following Definition 9. We now show that we can also compute
the values of ν̂≤ and ν̂≥ in L1MCs as well as lift the algorithms for computing
k-estimates towards L1MCs. Lifting Algorithm 1 and Algorithm 2 to L1MCs is
relatively straight forward as we only need to replace all occurrences of µ and
ν with µ̂ and ν̂. In turn, this leaves the question how to compute the canonical
quality measures µ̂ϕ, ν̂≤, and ν̂≥ (cf. Equations (3), (5) and (6)).

Without cost restrictions the canonical quality measure solely relies on com-
puting µ̂ = minC∈[Me

D] PrC,s
(
(¬G)UX

)
. This can be computed by an extension

of the standard value iteration algorithm that roughly works as follows [41,42]:
In each iteration, we construct the minimizing instantiation C ∈ [Me

D] w.r.t. the
value function computed in the previous iteration. For this, we initialize all tran-
sitions as P ′(s, s′) = P̂ (s, s′) and then shift probability mass away from those
successors that have the highest value into states that have the lowest value,
continuing this until either the transition is deterministic, or we have shifted a
total of e(s)/2 of probability mass. While we allow for different instantiations of
transitions in each step of the value iteration, the algorithm converges towards
a probability-minimizing instantiation of the L1MC. Hence, the value iteration
computes the value iteration under the UMC semantics (cf. Definition 7). Con-
vergence for this procedure was originally only shown for discounted rewards
[42] but later also for contracting models [52], i.e., models such that a goal state
is always eventually reached, which is a given assumption for MDPs with goals

20 Dubslaff et al.

(see Section 3). While [52] does not directly consider L1MCs, the convergence
proof does not rely on the specific shape of the uncertainty.
In the case where we have cost constraints, we have to compute ν̂≥c or ν̂≤c. For
a given threshold ϑ this is equivalent to deciding probabilistic computation tree
logic (PCTL) formulas to hold in all instantiations. While we are not aware of
any results showing this for L1MCs, this is an active area of research for the
related model of IMCs [21]. For these, the decision problem can be solved via a
reduction to checking parametric Markov reward models [1] against step-bounded
PCTL formulas [3]. Using, e.g., a binary search on ϑ, we can approximate ν̂∼c

to arbitrary precision. While L1MC and IMCs generally differ in their seman-
tics, they do coincide for MCs in which every state has only two successors.
Further, any MC can be transformed into this form [51]. Alternatively, one can
also directly encode the PCTL decision problem on L1MCs as a quadratic pro-
gram by treating the transition probabilities as variables and adding constraints
according to the error function given by the L1MC.

4.2 Supervised Learning

While estimates on the strategy employed in the model can yield better predic-
tions, it requires sampling data for every state of the environment to do so. In
particular, it does not exploit the fact that the strategy may behave similarly
in similar states, e.g., that only differ slightly in spatial coordinates. Under the
assumption that similar states indeed employ similar strategies in practice, we
can encode the components of a state as numerical values and use a neural net-
work to estimate the strategy employed, essentially interpolating the strategy
at states where no or little data is available. While we cannot give precise guar-
antees over the prediction quality anymore, this allows us to cover larger state
spaces with less data. Additionally, with this method using a neural network, it
is easily possible to handle even continuous state spaces.

Goal predictions through ML. Supervised learning for classification prob-
lems aims to predict a label y from a set of labels Y based on a system state x.
Referring to the example given in Fig. 1, x represents the posture of the hand,
captured via a sensor glove for example, and y is the goal of a human grab. Note
that we depart from the notations of our MDP framework of the last sections,
since we also allow for continuous states x and multiple goal states labelled by
single goal predictions y ∈ Y .

In general, we assume a data generating process pdata(x, y) = p(y | x)p(x)
over states x and goal labels y ∈ Y . The aim is then to fit the tuneable parame-
ters θ of a model pθ(y | x) to increase the quality of the prediction. Since the data
generating process pdata(x, y) is not known a priori, a data set D = {(xi, yi)}Ni=1

consisting of N pairs (xi, yi) is used to represent the empirical distribution
p̂data(x, y

)
. The common machine learning objective is then to minimize the

empirical risk defined as

E(x,y)∼p̂data(x,y)

[
L
(
pθ(y | x), y

)]
=

1

N

∑N

i=1
L
(
pθ(y | xi

)
, yi),

Towards a Formal Account on Negative Latency 21

with L representing a loss function, measuring the discrepancy between the
model output pθ(y | xi) and corresponding target label yi [16]. Therefore, we
adjust the model parameters by optimizing for

θ∗ = argmin
θ

∑N

i=1
L
(
pθ(y | xi), yi

)
.

Uncertainty in ML predictors. Neural networks are subject to aleatoric
and epistemic uncertainty [20]. Similar to the predictions we discussed in our
MDP prediction framework, high-quality predictions should satisfy two goals.
First, the neural network should accurately predict the most likely label ŷ =
argmaxk pθ(y=k | x) in any state x. Second, it should also communicate the
uncertainty a prediction is entailed with. A simple and computationally easy
measure to quantify the uncertainty of a prediction for state x is to compute the
entropy [38] of the predictive distribution, also known as predictive entropy [22]:

H(pθ,x) = −
∑

y∈Y
pθ(y | x) · log2

(
pθ(y | x)

)
.

We extend the entropy to the k-prediction setting by

Hk(pθ,x) = −
∑

Z⊆Y
|Z|=k

pθ(Z | x) · log2
(
pθ(Z | x)

)
. (8)

The prediction of the k most likely predictions can then be associated with a
measure of uncertainty Hk(pθ,x) in state x. While this slightly departs from
goal-dependent prediction qualities (cf. Definition 3) in our MDP setting, we
can also impose a threshold ϑ on the confidence computed as the inverse of the
normalized uncertainty 1− Hk(pθ,x)

log2 |Y | . The prediction can be potentially rejected
if the associate confidence of that prediction does not exceed ϑ.

Trustworthy uncertainty estimates by calibration. To correctly quan-
tify uncertainty associated with predictions, a neural network needs to be well-
calibrated. Calibration allows to justifiably determine thresholds on the predictive
uncertainty [39]. For the case of predicting a single goal, a neural network clas-
sifier is considered calibrated if for any predicted goals ŷ and the corresponding
classifier probability output p̂ = pθ(ŷ = y | x) we have P (ŷ = y | p̂ = p) = p
for all p ∈ [0, 1]. Intuitively, this means a neural network is well-calibrated if its
output p̂ matches the probabilities pdata of the data-generating process for all
labels y ∈ Y . While the fact that we do not know pdata means that we can never
expect an exact calibration, we can still employ empirical methods that yield a
neural network that is close to being well-calibrated.

A commonly-used scheme for neural network calibration is to generate an
ensemble of diverse neural network by randomizing the weight initialization and
training process of neural network and subsequently ensemble-averaging multi-
ple individual models [22]. We then can ensure that the estimation is probably
approximately correct by utilizing statistical methods such as Hoeffding’s in-
equality [19] or Weissman’s bound on the L1 distance used in Section 4.1 [50].

22 Dubslaff et al.

sm
ar

t
gl

ov
e

se
ns

or
da

ta

2-negative
latency

1-negative
latency

goal
reached

lig
ht

se
ns

or
ou

tp
ut

ϑ

2-prediction confidence
1-prediction confidence

-401 -176 0
time [ms]

m
od

el
co

nfi
de

nc
e

Fig. 3. Sensor data (top plot), light sensor output (center plot), and 1-prediction and
2-prediction confidence of the classifier (bottom plot) in a sample grabbing task [34].

Note that this only guarantees that the empirically estimated neural network
is calibrated w.r.t. the neural network minimizing loss on the training data D.
Hence, we cannot provide hard guarantees that the gathered data D is represen-
tative for the actual data-generating process.

Negative latency. In the setting of negative latency, i.e., predicting goals ahead
of time with guarantees, supervised learning can be used to tackle two fundamen-
tal problems that arise with formal MDP model-based and strategy estimations
obtained from reinforcement learning. First, it is also applicable when the ground
truth underlying process is completely unknown apart from the influencing fea-
tures of goal-directed behavior. Then, supervised learning can provide at least
tools to estimate the process based on observed data. Second, real-world pro-
cesses often result in observations in the form of continuous random variables,
which can be handled by most popular supervised learning techniques.

Given a neural network and estimates on prediction performance and cali-
bration, negative latency can then be seen as the time difference between the
moment of predicting the end state of an ongoing process before that end state
is reached. While the predictive uncertainty of the model allows handling the
trade-off between prediction accuracy and prediction rejection, the calibration
estimated during training gives rise to the empirical approximation of the model
to the underlying process.

Example 7. Our running example (see Example 1) has been inspired by a real-
world experiment where we used a smart glove as source for sensor data during

Towards a Formal Account on Negative Latency 23

grabbing objects such as a plate, an espresso cup, or a coffee cup [35,34]. In this
experiment, we used a light sensor beneath the objects to determine the time
where a goal is reached (i.e., the object is lifted). Training and calibrating a
neural network classifier on these inputs, we were able to obtain a predictor that
in combination with confidence thresholds could be used to turn predictions
into negative latency. Figure 3 shows a sample grab scenario from [34] where
smart glove sensor data (top), the light sensor (center), and the 1-prediction
and 2-prediction confidence (8) (bottom) are depicted. Note that all sensor data
acquired during gradual hand movements towards the object are continuous, i.e.,
cannot directly be modeled within our MDP and L1MC framework with goals
and predictions. In the bottom plot, we indicated the moments in time where the
1-prediction and 2-prediction confidence first surpass the quality threshold ϑ =
0.5. 1-negative and 2-negative latencies then are determined by the time from
these time points to the actual goal reached, i.e., 176 ms and 401 ms, respectively.

5 Concluding Remarks

In this paper, we sharpened the concept of negative latency by including formal
guarantees into anticipatory computing. Through a general formal framework,
we introduced goal-oriented predictions in MDPs and how they can be synthe-
sized under formal guarantees. Applications to negative latency in the theoreti-
cal setting, but also for strategy estimations obtained by reinforcement learning
and supervised learning were showcased. To this end, our work opened a new
perspective on anticipatory computing, where many further research could be
conducted. Our notions could be well extended to much richer classes of models,
such as continuous-time MDPs or models that account for partial observabil-
ity, or incremental versions. This would also imply the need for new methods,
e.g., including machine-learning methods for partially observable MDPs [11]. To-
wards handling settings where the strategy is not necessarily fixed, it is possible
to adapt the reinforcement learning approach by utilizing linearly updating in-
tervals [43]. Causal relationships between actions in goal-directed behavior could
also be the source of formal guarantees towards negative latency. A direct appli-
cation would be using degrees of sufficiency and necessity [7] as quality measure
of predictive models.

In the presented framework of cost-optimal predictions, we took on a local
view on predictions, assessing the quality of predictions in states independently
from each other. This approach renders our framework more accessible to ma-
chine learning applications, but might appear strict in other cases. For instance,
when many rare events could only provide small negative latencies, the over-
all negative latency drops as well. An approach to investigate in future work
would be to provide phase-based formal guarantees instead of state-based ones,
i.e., imposing quality thresholds on runs during phases of goal-directed behavior
instead. Also other synthesis problems with varying parameters such as ϑ, k,
overlapping goal assignments etc., are worth directions to investigate.

24 Dubslaff et al.

References
1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-

ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing.
pp. 592–601. STOC ’93, ACM, New York, NY, USA (1993)

2. Ashok, P., Křetínský, J., Weininger, M.: Pac statistical model checking for markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) Computer
Aided Verification. pp. 497–519. Springer International Publishing, Cham (2019)

3. Bacci, G., Delahaye, B., Larsen, K.G., Mariegaard, A.: Quantitative Analysis of In-
terval Markov Chains, pp. 57–77. Springer International Publishing, Cham (2021)

4. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 963–999. Springer (2018)

5. Baier, C., Cuevas Rivera, D., Dubslaff, C., Kiebel, S.J.: Human-inspired models
for tactile computing, chap. 8, pp. 173–200. Academic Press (2021)

6. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Proc. of the 6th NASA Formal Methods Symposium (NFM). LNCS,
vol. 8430, pp. 285–299. Springer (2014)

7. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R.: Oper-
ational causality - necessarily sufficient and sufficiently necessary. In: A Journey
from Process Algebra via Timed Automata to Model Learning. Lecture Notes in
Computer Science, vol. 13560, pp. 27–45. Springer (2022)

8. Baier, C., Dubslaff, C., Korenčiak, L., Kučera, A., Řehák, V.: Synthesis of opti-
mal resilient control strategies. In: 15th International Symposium on Automated
Technology for Verification and Analysis (ATVA). LNCS, vol. 10482, pp. 417–434.
Springer (2017)

9. Baier, C., Dubslaff, C., Wienhöft, P., Kiebel, S.J.: Strategy synthesis in markov
decision processes under limited sampling access. In: Rozier, K.Y., Chaudhuri, S.
(eds.) NASA Formal Methods. pp. 86–103. Springer Nature Switzerland, Cham
(2023)

10. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
11. Carr, S., Jansen, N., Wimmer, R., Fu, J., Topcu, U.: Human-in-the-loop synthesis

for partially observable markov decision processes. In: 2018 Annual American Con-
trol Conference, ACC 2018, Milwaukee, WI, USA, June 27-29, 2018. pp. 762–769.
IEEE (2018)

12. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking omega-regular properties
of interval markov chains. In: "Foundations of Software Science and Computational
Structures". pp. 302–317. FOSSACS’08/ETAPS’08, Springer-Verlag, Berlin, Hei-
delberg (2008)

13. Fettweis, G.P.: The tactile internet: Applications and challenges. IEEE Vehicular
Technology Magazine 9(1), 64–70 (2014)

14. Fitzek, F.H., Li, S.C., Speidel, S., Strufe, T.: Chapter 1 - Tactile Internet with
Human-in-the-Loop: New frontiers of transdisciplinary research. Academic Press
(2021)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the The-
ory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman, first edition edn. (1979)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
17. Haase, C., Kiefer, S.: The odds of staying on budget. In: 42nd International Collo-

quium on Automata, Language and Programming (ICALP). LNCS, vol. 9135, pp.
234–246 (2015)

Towards a Formal Account on Negative Latency 25

18. Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded reach-
ability in MDP. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 320–339. Springer International Pub-
lishing, Cham (2018)

19. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

20. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in ma-
chine learning: An introduction to concepts and methods. Machine Learning 110,
457–506 (2021)

21. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proc. of the 6th Annual IEEE Symp. on Logic in Computer Science (LICS).
pp. 266–277 (1991)

22. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information pro-
cessing systems 30 (2017)

23. Laroche, R., Trichelair, P., des Combes, R.T.: Safe policy improvement with base-
line bootstrapping. In: ICML. pp. 3652–3661. PMLR (2019)

24. Lema, M.A., Antonakoglou, K., Sardis, F., Sornkarn, N., Condoluci, M., Mah-
moodi, T., Dohler, M.: 5G case study of internet of skills: Slicing the human senses.
2017 European Conference on Networks and Communications (EuCNC) pp. 1–6
(2017)

25. Mozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P., Mouzakitis, A.: Deep
learning-based vehicle behavior prediction for autonomous driving applications:
A review. IEEE Transactions on Intelligent Transportation Systems 23(1), 33–47
(2022)

26. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency
towards 5G: Ran, core network and caching solutions. IEEE Communications Sur-
veys & Tutorials 20(4), 3098–3130 (2018)

27. Peischl, B., Tazl, O.A., Wotawa, F.: Testing anticipatory systems: A systematic
mapping study on the state of the art. Journal of Systems and Software 192,
111387 (2022)

28. Pejovic, V., Musolesi, M.: Anticipatory mobile computing: A survey of the state
of the art and research challenges. ACM Comput. Surv. 47(3) (apr 2015)

29. Petrik, M., Ghavamzadeh, M., Chow, Y.: Safe policy improvement by minimizing
robust baseline regret. In: NIPS. pp. 2298–2306. Curran Associates, Inc. (2016)

30. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Symposium
on Foundations of Computer Science (SFCS). pp. 46–57. IEEE (1977)

31. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc. (1994)

32. Rausand, M.: Reliability of Safety-Critical Systems: Theory and Applications. Wi-
ley Publishing, 1st edn. (2014)

33. Rosen, R.: Anticipatory Systems: Philosophical, Mathematical, and Methodolog-
ical Foundations. IFSR international series on systems science and engineering,
Elsevier Science & Technology Books (1985)

34. Schulz, J., Dubslaff, C., Seeling, P., Li, S.C., Speidel, S., Fitzek, F.H.P.: Negative
latency in the tactile internet as enabler for global metaverse immersion. IEEE
Network (accepted for publication) (2023)

35. Schulz, J., Nguyen, V., Seeling, P., Nguyen, G.T., Fitzek, F.H.P.: Anticipatory hand
glove: Understanding human actions for enhanced interaction. In: Proceedings of
the ACM international joint conference on Pervasive and Ubiquitous Computing
(UbiComp). Association for Computing Machinery (2023), accepted for publication

26 Dubslaff et al.

36. Seeling, P., Fitzek, F.H.: Anticipatory networking: Negative latency for ubiquitous
computing. In: 2021 IEEE 18th Annual Consumer Communications & Networking
Conference (CCNC). pp. 1–4 (2021)

37. Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the presence
of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 394–410. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

38. Shannon, C.E.: A mathematical theory of communication. The Bell system tech-
nical journal 27(3), 379–423 (1948)

39. Silva Filho, T., Song, H., Perello-Nieto, M., Santos-Rodriguez, R., Kull, M., Flach,
P.: Classifier calibration: a survey on how to assess and improve predicted class
probabilities. Machine Learning pp. 1–50 (2023)

40. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., Fettweis, G.: The 5G-enabled tac-
tile internet: Applications, requirements, and architecture. In: 2016 IEEE Wireless
Communications and Networking Conference. pp. 1–6 (2016)

41. Strehl, A., Littman, M.: An empirical evaluation of interval estimation for markov
decision processes. pp. 128– 135 (12 2004)

42. Strehl, A., Littman, M.: An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences 74, 1309–1331 (12
2008)

43. Suilen, M., Simão, T., Jansen, N., Parker, D.: Robust anytime learning of markov
decision processes. Proceedings of NeurIPS (2022)

44. Sun, Q., Huang, X., Gu, J., Williams, B.C., Zhao, H.: M2i: From factored marginal
trajectory prediction to interactive prediction. In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 6533–6542. IEEE Com-
puter Society, Los Alamitos, CA, USA (jun 2022)

45. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, second edn. (2018)

46. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development 11(1), 25–33 (1967)

47. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: 16th
International Conference on Foundations of Software Science and Computation
Structures (FOSSACS). LNCS, vol. 7794, pp. 353–368 (2013)

48. Urban, C., Miné, A.: A review of formal methods applied to machine learning.
arXiv preprint arXiv:2104.02466 (2021)

49. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proc. of the 26th IEEE Symp. on Foundations of Computer Science
(FOCS). pp. 327–338. IEEE Computer Society (1985)

50. Weissman, T., Ordentlich, E., Seroussi, G., Verdú, S., Weinberger, M.J.: Inequali-
ties for the L1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech.
Rep (2003)

51. Wienhöft, P., Suilen, M., Simão, T.D., Dubslaff, C., Baier, C., Jansen, N.: More
for less: Safe policy improvement with stronger performance guarantees. In: IJCAI
(2023)

52. Wu, D., Koutsoukos, X.: Reachability analysis of uncertain systems using bounded-
parameter markov decision processes. Artificial Intelligence 172(8), 945–954 (2008)

53. Xiang, Z., Gabriel, F., Urbano, E., Nguyen, G.T., Reisslein, M., Fitzek, F.H.P.:
Reducing latency in virtual machines: Enabling tactile internet for human-machine
co-working. IEEE Journal on Selected Areas in Communications 37(5), 1098–1116
(2019)

Towards a Formal Account on Negative Latency 27

A Appendix

In this appendix, we mainly provide the proofs of our statements that did not
fit into the main paper due to space constraints.

A.1 Predictions in MDPs

Theorem 3 (Proof of Theorem 1). Let (M, G) be an MDP with goals, k ∈ N,
µ an additive prediction quality, and ϑ ∈ [0, 1]. If there is a µϑ-state k-prediction
for (M, G), then Algorithm 1 computes a complete one in time polynomial in
the size of (M, G).

Proof. For all s ∈ S, it is checked whether there is a k-prediction by performing a
while loop in Line 3. This while loop terminates after adding exactly one element
to π(s) in each execution the latest after k steps. Hence, Algorithm 1 terminates
and there are in total at most |S|·|G| executions of the while loop, which is also
polynomial in the size of (M, G). By setting the prediction to ∅ in Line 6 when
(4) is violated or the prediction is larger than k, we ensure that π(s) is indeed a
µϑ-state k-prediction. Completeness is guaranteed through probability ordering
in Line 4 and additivity of the prediction quality µ. Properness is correctly
ensured in Line 13, since all states that are not in the support of π violated the
condition of Line 6. ut

Theorem 4. The µϕϑ-state k-prediction decision problem is NP-complete.

Proof. Containment in NP is clear, since nondeterministically guessing a predic-
tion π and checking whether for all s ∈ S with π(s) 6= ∅ we have µϕ

(
s, π(s)

)
≥ ϑ

can be done in polynomial time through standard MDP reachability [10].
We show NP-hardness through a reduction from the minimum hitting set

problem (MHS), which is known to be NP-complete [15]. MHS takes a finite set
of vertices V , hyperedges E0, E1, . . . , En ⊆ V , and a hitting set parameter k ∈ N
with k ≤ |V | as input, asking whether there is a hitting set H ⊆ V with |H| ≤ k
such that for all i ∈ {0, 1, . . . , n} the hyperedge Ei hits H, i.e., Ei ∩H 6= ∅. As-
sume an instance of the MHS and set ϑ = 1/|V | along with the MDP with goals
(M, G) where S = {ı}∪V where ı 6∈ V , G = V , Act = {α0, α1, . . . , αn}, and the
transition probabilities are given for all i ∈ {0, 1, . . . , n} by P (ı, αi, s) = 1/|Ei|
if s ∈ Ei and P (ı, αi, s) = 0 otherwise. We now show that any solution of the
MHS induces a µϕϑ-state k-prediction and vice versa.
(⇒): Let H ⊆ V be a solution of the MHS. Then for all i ∈ {0, 1, . . . , n} pick
an si ∈ Ei ∩H, which exists due to Ei ∩H 6= ∅, and observe that P (ı, αi, si) ≥
1/|Ei| ≥ ϑ. Hence, for all distributions δ over Act we have

∑n
i=0 δ(αi)·P (ı, αi, si) ≥

ϑ, which directly yields µϕ(ı,H) ≥ ϑ since every possible strategy can be rep-
resented as a distribution over Act . Now define the proper k-prediction π by
π(ı) = H and π(s) = ∅ for s ∈ V , which is in fact a µϕϑ-state k-prediction.
(⇐): Let π be a µϕϑ-state k-prediction. Then, π(ı) 6= ∅ since π is proper. Fur-
ther, for all i ∈ {0, 1, . . . , n} we have P

(
ı, αi, π(ı)

)
≥ ϑ since otherwise there

28 Dubslaff et al.

would be a strategy σ with σ(ı, αi) = 1 such that µϕ

(
ı, π(ı)

)
< ϑ due to µϕ

minimizing over all strategies. Thus, for all i ∈ {0, 1, . . . , n} there is si ∈ π(ı)
with P (ı, αi, si) ≥ ϑ, since all transition probabilities in M are at least ϑ. By
construction si ∈ Ei ∩ π(ı) and since |π(ı)| ≤ k, the hitting set H = π(ı) is a
solution of the corresponding MHS. ut

A.2 Strategy Estimation

Proposition 4 (Proof of Proposition 2). Let M be an MDP, D be a set of
runs on M sampled from a fixed strategy σ, and δ ∈ (0, 1) an error tolerance.
Then with probability at least 1− δ there is a C ∈ [Me

D] that is Mσ up to stutter
steps.

Proof. From Definition 8 and [50] it follows that with probability at least 1− δ
there is an C ∈ [Me

D] with state space S ∪ Sα such that for all s ∈ S and
sα ∈ SAct we have PC(s, sα) = σ(s)(α).

By definition, in M we have that the path sαs′ has probability mass σ(s)(α)·
P (s, α, s′) = PC(s, sα) · P (sα, s′) = Pr(ssαs

′), i.e., the path ssαs′ in M′ has the
same probability mass as sαs′ in M. The accumulated cost is C(s, α) for both
paths by definition. ut

Lemma 2 (Proof of Lemma 1). Let M = (S,Act , C, P, ı, G) be an MDP and
Me

D an L1MC that estimates M as in Definition 9 with the empty data set
D = ∅. Then, for all states s ∈ S, goals X ⊆ G, cost thresholds c ∈ N

µ̂ϕ(s,X) = Prmin
M,s

(
(¬G)UX

)
ν̂≤c(s,X) = Prmin

M,s

(
(¬G)U≤cX

)
ν̂≥c(s,X) = Prmin

M,s

(
(¬G)U≥cX

)
Proof. As D = ∅ we have that the error function e is defined as e(s) = |Act(s)|
for all s ∈ S and e(sα) = 0 for all sα ∈ SAct . Hence, the transition function for all
instantiations C′ = (S ∪ SAct , C

′, P ′, ı, G) are exactly specified by the following
constraints for all s ∈ S and sα ∈ SAct :∑

s′∈SAct

|P ′(s, s′)− P̂ (s, s′)| ≤ |Act(s)|

∑
s′∈S

|P ′(sα, s
′)− P̂ (sα, s

′)| ≤ 0

In case s ∈ S by definition we have |P ′(s, s′)− P̂ (s, s′)| > 0 for at most |Act(s)|
values of s′, i.e., the first condition is always true. The second condition obviously
only holds if P ′(sα, s′) = P̂ (sα, s′), and by definition, P̂ (sα, s′) = P (s, α, s′), i.e.,
all instantiations preserve the probabilistic transitions in the MDP M.

Now, consider an instantiation C ∈ [Me
D] of our L1MC. In the L1MC have

PrM′(ssαs
′) = P ′(s, sα)·P ′(sα, s

′) = P ′(s, sα)·P (s, α, s′) for all s ∈ S. Similarly,
in the MDP we have PrM(sαs′) = σ(s)(α) · P (s, α, s′) for all s ∈ S. This

Towards a Formal Account on Negative Latency 29

means that we can establish a bijection f between instantiations C ∈ [Me
D]

and schedulers σ over M: We define f(P ′) = σ where σ satisfies that for all
s ∈ S and α ∈ Act(s) we have

σ(s)(a) = P ′(s, sα)

Then C and the MDP with associated scheduler σ = f(P ′) are equivalent up to
stutter steps (cf. Proposition 2), i.e., have same probability and cost for equiv-
alent paths. From this it follows that µ and µ̂, as well as ν∼c and ν̂∼c always
agree. ut

Proposition 5 (Proof of Proposition 3). Given an MDP with goals (M, G)
and a ν̂∼cϑδ-state prediction π(s) as in Definition 10, we have PrMσ,s((¬G)U∼cX) ≥
ϑ.

Proof. We show this directly by a sequence of straight-forward inequalities:

PrMσ,s((¬G)U∼cX)

≥PrMσ,s((¬G)U∼cX | Mσ ∈ [Me
D]) · Pr(Mσ ∈ [Me

D])

≥ min
C∈[Me

D]
PrC,s((¬G)U∼cX) · Pr(Mσ ∈ [Me

D])

≥ν̂∼c(s,X) · (1− δ)

≥ϑ

	Towards a Formal Account on Negative Latency

