
Integrating Distributed Component-Based
Systems through Deep Reinforcement Learning⋆

Itay Cohen and Doron Peled

Bar Ilan University, Ramat Gan 52900, Israel

Abstract. Modern system design and development often consists of
combining different components developed by separate vendors under
some known constraints that allow them to operate together. Such a
system may further benefit from further refinement when the compo-
nents are integrated together. We suggest a learning-open architecture
that employs deep reinforcement learning performed under weak assump-
tions. The components are “black boxes”, where their internal structure
is not known, and the learning is performed in a distributed way, where
each process is aware only on its local execution information and the
global utility value of the system, calculated after complete executions.
We employ the proximal policy optimization (PPO) as our learning archi-
tecture adapted to our case of training control for black box components.
We start by applying the PPO architecture to a simplified case, where
we need to train a single component that is connected to a black box en-
vironment; we show a stark improvement when compared to a previous
attempt. Then we move to study the case of multiple components.

1 Introduction

The process of system development often involves partitioning the system’s task
into different components that work in tandem. These components can be de-
veloped in-house by different groups and can also include parts outsourced to
other software houses or off-the-shelf elements. Recently, we see a growing re-
search effort on the automatic construction of system components directly from
the specification. We are also starting to witness the automatic synthesis of code
based on natural language requirements, e.g., as part of the capabilities of the
chatbot ChatGPT [1] that is based on large-scale deep learning. Constructing a
system from concurrently performing components that are developed by differ-
ent groups and using different methodologies may require some means of control
for optimizing the combined behavior. In particular, the goal of such control
can be the following: as components can interact with one another, one would
like to avoid situation where a large number of attempts to interact would be
unsuccessful due to the lack of knowledge of components about the current state
of one another.

⋆ This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 956123 - FOCETA.

2 Itay Cohen and Doron Peled

In this work, we address the problem of providing distributed control to
a system that is developed from multiple components that interact with each
other, i.e., a multi-agent system. The internal structure of these components is
unknown (due to their development process), i.e., each component is considered
to be a black box with respect to each other; only the types of interactions with
the other processes is known to each process. We suggest that the components
are designed with local provisions for establishing control based on deep learning.
We do not want to rely on shared information for achieving control during their
joint execution. Thus, the learning process can use only the locally observed
information of a component.1 Our goal is then to choose an effective learning-
open architecture for distributed control for optimizing the joint execution of a
multi-agent system. As a specific goal that we can demonstrate and experiment
with, we chose to minimize the overall number of failed interactions between
the processes (components) of a multi-agent system, i.e., the number of times
that a process offers an interaction to another process while the other process is
not ready for it. While this optimization criterion is natural and attainable, our
control synthesis method does not have to be confined to it. A more general goal
we considered is to maximize the cumulative rewards assigned for each type of
action in a process (component).

Since each component sees the rest of the system as a black box with which
it can interact, we adopt a reinforcement learning approach where the control
is synthesized based on observations performed on the integrated system. How-
ever, due to using components developed independently, during training each
component has access only to its local information. Our suggested approach can
be considered as a version of multiagent reinforcement learning (MARL) [2]. In
particular, we employ deep multiagent reinforcement learning [9], where trained
neural networks undertake the task of controlling the components. While there
is a large number of models and architectures designed for MARL, we seek an
architecture and a training methodology that best suite our targeted systems,
consisting of concurrent black box components that interact with one another.
We refrain from allowing interactions between the learning components, e.g., the
sharing of information at training time (as of a shared critique) [15]. We also
concentrate on using state-of-the art techniques, including the proximal policy
optimization (PPO) algorithm [13], a reinforcement learning algorithm that is
employed also in chatGPT.

We developed our approach in two steps. In the first step we considered a
simplified model that has concurrent synchronous components, which was first
introduced in [7]. This allowed us to concentrate first on the selection of the deep
learning architecture and parameters, and to compare to experiments that were
done with respect to this limited model. This model includes a finite state com-

1 This can also be easily generalized to employ a utility function that is calculated
from the local utility functions of each component; for example, each component
can calculate some measure of success (e.g., in form of a discounting sum) on per-
forming interactions, and the global utility can be the sum of this measure over the
participating processes.

Integrating Distributed Component-Based System through Deep RL 3

ponent that we call the system, which interacts with a black-box environment.
The control is only imposed on the system component and the environment
component is uncontrollable. In each step, the system and the environment stay
synchronized, where the communication between them is in the form of a hand-
shake. The system makes a choice for the next action, and the environment must
follow that choice if the action is enabled. Otherwise, a failed interaction occurs
and the system does not move while the environment makes some independent
progress. The control enforces the choice of the system’s next action based on
the available partial information, which involves its sequence of local states and
actions that occurred so far and the indication of success/failure to interact with
the environment at each point. The control goal is to minimize the number of
times that the system will offer an action that will result in a failed interaction.

As part of the first step of our approach, we devise an alternative deep re-
inforcement learning approach for the simplified setting, based on the Proximal
Policy Optimization algorithm. We integrate a Recurrent Neural Network (RNN)
with the network architecture of PPO, to capture the long term history of the
executions. We show that this approach improves the experimental results of [7].

After experimenting with the restricted model, the second step included a
full and more realistic model that encapsulates multiple concurrent components
executing asynchronously. Although the model is asynchronous, it preserves the
handshake-like form of communication; a pair of components should offer each
other the same type of action to establish a successful interaction. We introduce
a generalized approach that derives control for multiple components that can
interact with one another, where a separate control, based on a trained RNN, is
imposed on each component. Controlling the different components is obtained
in a distributed fashion, where each component considers the others as its envi-
ronment. The only signal that is shared between the components in whether an
interaction succeeded, failed or missed.

To motivate our deep learning framework, consider the dining philosophers
problem, which is a classical problem involving scheduling and interaction be-
tween concurrent processes. It involves a number of philosophers (often five)
sitting around a table, with a fork between each two of them. Each philosopher
needs to capture two forks to eat. After eating, he can release the forks. In order
to let all the philosophers eat, a strategy involving capturing the forks is needed.
A bad strategy can, e.g., let each philosopher capture the left fork first; then they
discover that no one can eat, then trying the right fork, etc. In [10], it was proven
that there is no deterministic (i.e., non probabilistic) and symmetric solution to
the dining philosophers problem. In our framework, there is also the additional
factor that the philosophers do not known the structure of each other (they are
black boxes), hence the sought strategy needs to be discovered by experiments.
Our deep reinforcement learning approach learns such strategies, represented
within the used neural networks.

We implemented our proposed methodology using the PyTorch library [12].
To test our implementation, we devised small but somewhat challenging exam-
ples. These examples allowed us to evaluate the results of our experiments. The

4 Itay Cohen and Doron Peled

different parameters of our approach were also fine-tuned as a result of experi-
menting with these examples. Our experiments consist of a comparison between
the performance of our implementation and the optimal strategy for each exam-
ple.

2 Preliminaries

We study systems that are constructed from finite state components and interact
with each other. At any state a component can choose between a set of actions.
A controller supervising a component can observe the current state of the system
and can impose restrictions to the set of actions allowed at the current state. Such
a mechanism is standard in control theory, and a formalization can be found e.g.,
in [3]. In particular, we look at a system constructed from multiple components
running concurrently. The actions that are mutual to a pair of components can be
considered as interactions and both components need to select the same action
in order to successfully interact. In models like CSP [6] the interaction can be
asymmetric, where one side is a sender and the other one is a receiver. In other
models the interactions are defined in a more general context, not necessarily
associated with message passing [4].

A Simplified Model Initially, we look at a simplified case, where one com-
ponent (process) is a given state machine that we term “the system”, and the
other one is a black box machine we term “the environment”. The set of ac-
tions is joined by both components. We further assume that the system and the
environment are executing synchronously. The system has priority in selecting
the next action (it is the “master”) and if the action it offers the environment
is currently available by the environment (which is the “slave”), they will both
interact and move to their respective state. Note that the state of the environ-
ment and the set of actions enabled from it are unknown, as the environment is
a black box. If the environment cannot participate in the action offered to it by
the system (it is not enabled), then it chooses one of its other enabled actions
and progresses according to it. Note that here, for simplicity of the model, the
environment progresses on one of the interactions without the system taking part
in it; this modeling assumption will be removed in the more advanced model. In
the simplified model case, the control is enforced only on the system, where the
environment is to be left as is.

The details of this model were selected in order to simplify both the imple-
mentation and the presentation. This is also the model used in [7] and adopting
the model allows us to compare the training architecture that we use here with
the results of that work.

Example Consider the system in Figure 1 (left) and its environment (right).
This system can always make a choice between the actions a, b and c, and the
environment has to agree with that choice if it is enabled from its current state.

Integrating Distributed Component-Based System through Deep RL 5

Remember that the system is unaware of the environment’s internal state. If
the system selects actions according to (abc)∗ then the environment can follow
that selection with no failures. On the other hand, if the system selects actions
according to (baa)∗ it will fail constantly, while the environment keeps changing
states. Our goal is to construct a control that restricts the system’s actions at
each step such that the number of failed interactions will be minimal.

g1

a, b, c

e1 e2

e3

a

bc

Fig. 1: permitted: System (left) and Environment (right).

A More Advanced Model In the advanced model, components (processes)
can interact with one another. All the interactions involve pairs of components.
Each component may also have local actions (which may model interactions
with yet another component, when we want to abstract away some of the com-
ponents). All the components are black boxes. There is no explicit notion of
environment is this model; in a sense, each process can consider the rest of the
processes combined as its environment. Control is applied, separately, to each
component. If an agreed upon interaction is not selected, a component can se-
lect to perform a local action, but unlike the simpler case, cannot decide to
participate unilaterally in an interaction. The execution is now asynchronous,
with components performing according to their own speeds. The choice of an
asynchronous execution model further justifies the use of deep reinforcement
learning as a method for learning to control the components; the relative speed
of the different concurrent components contributes to the nondeterminism in
the execution. Changing only the timing parameters of a single system would
potentially change the optimal control strategies for the rest of the components.
Hence it is the actual experience that is used in the training that allows us to
effectively control the system; thus, a preliminary learning of finite state models
of the components would take into account the timing parameters.

Reinforcement Learning Reinforcement learning (RL) includes methods for
controlling the interaction with an environment [14]. The goal is to maximize
the expected utility value that sums up the future rewards/penalties; these can
be discounted by γn with respect to its future distance n from the current point,
with 0 < γ ≤ 1, or be summed up with respect to a finite distance (horizon).
Typically, the model for RL is a Markov Decision Process (MDP), where there is
a probability distribution on the states that are reached by taking an action from

6 Itay Cohen and Doron Peled

a given state. When the current state of the environment is not directly known
to the controller during the execution, the model is a Partially Observable MDP
(POMDP).

A value-based control policy (strategy) can be calculated by maximizing ei-
ther a state-value function V (s) or a state-action value Q(s, a). Assuming acting
according to a certain strategy, the value function V (s) is equal to the expected
discounted sum of rewards of a controller starting from state s. The state-value
function means the expected discounted sum of rewards received by the con-
troller starting with an action a from state s. When the environment is fully
observable, and the model that indicates the probability to move from one state
to another (given an action) is known, a procedure based on Bellman’s equa-
tion [14] can be used. If the probabilities are unknown but we can still observe
the environment, a randomized-based (Monte Carlo) exploration method can be
used to update the value function and converge towards the optimal policy.

Policy based RL methods avoid calculating the optimal utility value directly
at each state, hence are more effective when the number of possible states is huge.
The policy is parametric and its parameters are optimized based on gradient
descent. Such parameters can be, in particular, the weights of a neural network.
The class of reinforcement learning algorithms that utilize neural networks to
represent a parametric policy, or to estimate state-action values is called deep
reinforcement learning.

Deep Learning Deep learning is a collection of methods for training neural
networks, which can be used to perform various tasks such as image and speech
recognition or playing games at an expert level. A neural network consists of a
collection of nodes, the neurons, arranged in several layers, where each neuron is
connected to all the neurons in the previous and the next layer. The first layer is
the input layer and the last layer is the output layer. The other layers are hidden.

The value xi of the ith neuron at layer j + 1 is computed from the column
vector y = (y1, . . . , ym) of all the neurons at layer j. To compute xi, we first
apply a transformation ti = wiy+bi where wi is a line vector of weights, and bi a
number called the bias. Then we apply to the vector t = (t1, . . . , tn) an activation
function, making the value of each neuron a non-linear function of the values of
neurons at the preceding layer. Typical activation functions include the sigmoid
and tanh functions, as well as ReLU and softmax.

The ReLU (rectified linear unit) activation function is defined as the positive
part of its argument. When applied on a vector, it is defined as a vector of the
positive part of each of its coordinates.

ReLU(x) =

{
x if x > 0

0 otherwise.

The softmax activation function takes a vector of values and normalizes it
into a corresponding vector of probability distributions, i.e., with values between

Integrating Distributed Component-Based System through Deep RL 7

0 and 1, summing up to 1.

softmax (t1, . . . , tn) =

(
et1

Σieti
, . . . , . . . ,

etn

Σieti

)

Given values for all neurons in the input layer, we can compute the values
for all neurons in the network. Overall, a neural network represents a function
Rn → Rm where n is the size of the input layer, and m the size of the output
layer.

The values of the weights wi and the biases bi are modified through train-
ing. A loss function provides a measurement of the distance between the actual
output of the neural network and the desired output. The goal of training is to
minimize the loss function. Optimizing the parameters is performed from the
output layer backwards based on gradient descent.

For applications where sequences of inputs are analyzed, as e.g., in language
recognition, one often uses a form of network called Recurrent Neural Network
(RNN). An RNN maintains a feedback loop, where values of some neurons are
fed back to the network as additional inputs in the next step. In this way an
RNN has the capability of maintaining some long term memory that summarizes
the input sequence so far. A more specific type of RNN that intends to solve
this problem is a Long Short-Term Memory, LSTM. It includes components that
control what (and how much) is erased from the memory layer of the network
and what is added.

Proximal Policy Optimization Proximal Policy Optimization (PPO) [13] is a
deep reinforcement learning algorithm that is based on a policy gradient method;
it searches the space of policies rather than assigning values to state-action pairs.
The policy π is represented by a neural network, and its set of parameters is
denoted by θ. A detailed description of the network architecture will follow.
This algorithm uses the notion of the advantage of an action with respect to a
certain state. An advantage A(s, a) measures how much an action is a good or a
bad decision given a certain state. Formally, is it defined as A(s, a) = Q(s, a)−
V (s). To trace the impact of the different actions, the algorithm calculates the
probability of the action under the current policy π(a | s), and divides it by the
probability of the action under the previous policy πold(a | s). For timestep t,
this ratio is denoted by rt(θ), where

rt(θ) =
πθ(at | st)
πθold(at | st)

When rt(θ) is greater than one, the relevant action is more probable in the
current policy than in the old one. rt(θ) that is between zero and one indicates
that the action is less probable in the current policy than in the old one.

The algorithm uses the clipped surrogate objective function LCLIP to optimize
the policy’s set of parameters θ. This function is maximized using stochastic
gradient ascent. It is defined as follows:

8 Itay Cohen and Doron Peled

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]

where

– Êt denotes the empirical expectation over timesteps.
– Ât is the estimated advantage of the selected action at time t.
– clip is a function that clips the values of rt(θ) between (1−ϵ, 1+ϵ). Formally,

it is defined as follows:

clip(rt(θ), 1− ε, 1 + ε) =


1 + ε if rt(θ) ≥ 1 + ε

1− ε if rt(θ) ≤ 1− ε

rt(θ) otherwise.

Note that when rt(θ) is not in the interval (1−ϵ, 1+ϵ), the gradient of clip(rt(θ), 1−
ε, 1 + ε) is zero.

The main idea of this objective function is to incentivize actions that led to
higher rewards. However, we would like to restrict the amount that the policy
can change in every optimization, to help guarantee that it is monotonically
improving. This restriction is reflected by the clipping mechanism of the objec-
tive function. Consider a case where a certain action became significantly more
probable under the current policy rather than the old one, and its advantage
is positive, meaning that it had an estimated positive effect on the outcome. If
there were no restrictions, we might perform a relatively big optimization step,
that might destruct our policy in the future. With the clipping mechanism of
rt(θ), its gradient would be considered as zero if it exceeded the threshold of
1 + ϵ, and we would ignore the potential optimization step as a result.

According to the algorithm, we use the current policy πθ to sample a con-
stant number of episodes, and calculate the reward-to-go for every action in
each episode. The reward-to-go of a state-action pair is the discounted sum of
rewards from this point and up until the end of the episode. It is denoted by
R̂(st, at). This value is often used as a local approximation of the state-action
value Q(s, a). The estimated advantage of a chosen action is then calculated by
Ât = R̂(st, at)−Vφ(st), where Vφ is a state-value function that is also optimized
throughout the same learning process. Then, the policy parameters are optimized
according to the clipped surrogate objective function. Later, the parameters of
the state-value function are optimized according to the mean-squared loss with
respect to the reward-to-go:

MSE(φ) = Êt[(Vφ(st)− R̂(st, at))
2]

3 The Proposed Approach

3.1 Overview

Initially, we suggest a PPO based approach that constructs a controller for the
single system component in the simplified model. It strives to minimize the num-
ber of failures of interactions offered by the system component to the black box

Integrating Distributed Component-Based System through Deep RL 9

environment component. Controlling the selection of the system component’s
actions at each step assumes that it is unaware of the environment’s internal
state. In fact, the only information that is available from the environment at
each execution step is whether the interaction succeeded or not.

Later, in the case of the more advanced model which includes multiple com-
ponents and local actions, we suggest an architecture where each component is
learning-enabled, equipped with its own neural network. The neural network is
trained to control the process within the context of the entire system, based on
a given utility measurement. The training of the different components is per-
formed simultaneously, based on executions of the entire system; however, each
component is trained within that context locally, based on the local information
of the components.

To get an informed decision regarding the next action to be selected by
the system component, our proposed controller, utilizes both long term and
short term histories of the current execution. The short term history consists
of the latest execution step from the component’s perspective: the latest action
selected by the component, whether this interaction was successful, and the
current component state as a result of the interaction. The long term history is
a finite representation of the past selected actions of the component, including
their status (successful or not), and the past states. This finite representation
is a summary of the execution so far from the component point of view. It is
necessary to represent the long term history in a finite way, since we design our
controller to operate under unbounded execution lengths.

At each execution step the controller receives both the short term and the
long term histories, selects the next interaction to be offered, and updates the
long term history representation accordingly.

3.2 Suggested Deep Learning Architecture

The Controller’s State Space Representation As mentioned above, the
controller receives two inputs - the short and the long term histories. A short
term history is represented by a matrix M of size |Ss| × |T s|, where Ss is the
system’s state space and T s is the system’s set of actions. We assume a fixed
order on the elements in Ss and T s. The only non-zero cell of the matrix is Mij ,
if the last offered action was tj ∈ T s, and the current system state as a result is
si ∈ Ss. The value of Mij is 1 if the interaction was successful and −1 otherwise.
The controller’s state space is the set of all valid short term histories, denoted
by S′. Note that the state space does not provide any information about the
long term history. This is due to the fact that short term history usually have
greater impact on the selection of future actions than long term history. Hence,
we wanted to emphasize these elements in terms of the actor network’s course
of action.

Actor-Critic based Implementation To construct the controller, we imple-
mented a variant of the PPO algorithm with a few modifications. Our variant
relied on the Actor-Critic architecture [5].

10 Itay Cohen and Doron Peled

Actor-Critic learning is a deep reinforcement learning technique that utilizes
both an actor neural network and a critic neural network. The actor network
is responsible for generating actions based on the current state, while the critic
network evaluates the quality of the different states of the network. The two
networks are trained in a cooperative manner, where the idea is that the critic
provides feedback to the actor. To capture the long term history in a finite
representation, we incorporated an RNN layer in the architecture of both the
actor and the critic networks.

The actor network represents the policy πθ(a | s′), where s′ ∈ S′, and θ is a
the set of the network’s parameters. The input layer is a vector that represents
the short term history matrix, of size |Ss| × |T s|. This vector is passed through
an LSTM layer, which is followed by a few linear layers separated by a ReLU
activation function. The output of the last layer is a vector of size |T s|. It is
passed through a softmax function to give the actual output of the network
in a form of a probability distribution over the possible interactions T s. The
parameters of this network are optimized to maximize the objective function
LCLIP.

The critic network serves as the estimated state-value function of the current
policy πθ induced by the actor. Its structure is almost identical to the actor
network. It differs only in the last layer, which has only one neuron. This sin-
gle neuron’s value is the approximated value of the input state vector V (s′).
The estimated advantages are calculated based on the controller state values
received from this network, and the reward-to-go values derived from the sam-
pled episodes. The critic parameters are optimized to minimize the MSE loss
function.

The Training Phase Our goal is to find a set of parameters θ that maximizes
the successful number of interactions with the environment. We start by training
the actor and the critic networks. At the beginning of every optimization phase
of the two networks, we use our current actor network πθ to sample a constant
number of episodes of the same length. At each timestep, the actor network
returns a probability distribution over all the possible interactions.

On the one hand, we can exploit the current knowledge of the actor network
and always choose the interaction with the highest probability to maximize the
number of successful interactions. On the other hand, exploring new interac-
tions with lower probabilities may be necessary to gather information about the
environment and discover new and potentially better interactions.

We observed that a decaying level of exploration over time helps in finding
optimal policies in our setting. Hence, we chose our next action in the training
phase according to the Boltzmann Exploration technique. Instead of deriving the
distribution over the possible interactions based on the regular softmax function,
we used a softmax function with a temperature parameter T .

softmax (t1, . . . , tn;T) =

(
e

t1
T

Σie
ti
T

, . . . , . . . ,
e

tn
T

Σie
ti
T

)

Integrating Distributed Component-Based System through Deep RL 11

We sample the next interaction according to this distribution. The temper-
ature parameter is used to control the degree of exploration, with higher tem-
peratures leading to more exploration and lower temperatures leading to more
exploitation. We start the training phase with an initial temperature value of T0

and gradually decay it in a geometric fashion. We stop decaying it when T = 1.

In [7], exploration is performed during training by selecting a random action
in generating the current execution of the system; exploitation is done by select-
ing the action with the highest probability among the probability distribution
provided by the network. A constant ϵ represented the probability for exploring
the environment. Note that this exploration technique ignores any information
the controller network might hold regarding the actions. Even if one action is
less probable to select than another action according to the network’s action
distribution, the two would be selected with an equal probability as part of an
exploration step. On the contrary, our approach uses the actor network to both
explore and exploit. By sampling the next action directly from the action distri-
bution, less probable actions according to the actor network would be selected
less frequently than the more probable ones.

We assigned two reward values for the offered interactions in the collected
episodes. A reward of 1 was given to a successful interaction and a reward of −1
was given otherwise. After optimizing both networks according to their objective
functions LCLIP and MSE, a new optimization step begins. Note that we do not
directly use the critic network to select an interaction. The critic network is used
as a mean to estimate the value of a controller state, as a part of the estimated
advantage calculation of every observed state-action pair. The training phase
ends upon completing a predefined number of optimization steps.

Another difference between our approach and the previously mentioned ap-
proach is the frequency and the timing of the optimization steps. In the previous
approach, more local optimization steps are performed. This started with a loss
function that was calculated after every interaction with the environment, and
optimized the parameters according to its gradient. The loss function definition
differed depending on whether the last interaction succeeded or not. However,
local optimization steps may not always yield optimal policies. In some cases
we need to look beyond the immediate outcome of an interaction to make an
informed decision. Consequently, an addition of a lookahead parameter allowed
them to optimize the network after observing the outcome of a sequence of in-
teractions. Longer lookahead assisted in learning optimal policies for a relatively
more complex scenarios. The controller’s network was optimized in the previous
work according to this loss function. This optimization approach may be un-
stable for two reasons. First, a fraction of an execution may be insufficient for
optimizing the networks parameters. In some cases, we would know if a certain
action paid off only at the end of an execution. Another reason is that infor-
mation from a single execution may not adequately represent the effectiveness
of a given policy; i.e., an excellent policy on average can, by chance, show weak
performance.

12 Itay Cohen and Doron Peled

PPO performs an optimization step only after at least a few full executions
are evaluated. This is reflected in the LCLIP objective function, where an empir-
ical expectation over all batch timesteps is taken. The fact that outcome of full
executions is considered essentially eliminates the need for lookahead.

The Evaluation Phase After training, we only exploit the actor network
to evaluate its performance. At this point, the critic network in not used at
all. In our experiments we assumed that the optimal policies are deterministic
rather than stochastic. Hence, exploitation in our context would be selecting the
action with the highest probability at each timestep. Stochastic policies might
be achieved by sampling interactions from the actor network’s distribution.

3.3 An Extension of the Proposed Approach to the Advanced
Model

We now generalize our approach to synthesize a control for the more advanced
model where components may interact with each other asynchronously, with
local actions in addition to their regular way to interact.

Our system consists now of multiple components with extended functionali-
ties that interact with one another; interactions are allowed only between pairs
of components. All the components consider each other as a black box. This
time, each action may be associated with one of two types:

– Interactions - these actions behave as a standard action in the simplified
model, and indicate an attempt of two components (agents, processes) to
interact.

– Local actions - these actions are performed independently with respect to
their component. A necessary and sufficient condition for a local action to
be triggered, is to be enabled and selected by the respective component.

As mentioned above, the execution is asynchronous, with components per-
forming according to their own speeds; each component operates according to
its own internal clock, where a fixed time interval represents the duration of
every timestep in the execution. Note that different components may have dif-
ferent time intervals. Despite the asynchronous nature of the joint execution, the
interaction between components is still established in a handshake form.

At each timestep, a component may offer an interaction to another compo-
nent, or perform a local action. If an interaction was offered, it would wait the
entire timestep for a response. We first examine the case where two components
chose to interact with each other. Here, both components would be informed
whether or not their interaction was successful. The interaction is considered
successful when the same action was proposed by both components. In this case,
the two components change their respective states according to the proposed ac-
tion. If two different actions were offered, the interaction fails. Then, both sides
uniformly sample at random some enabled local action and move accordingly.

Integrating Distributed Component-Based System through Deep RL 13

A component that chose to interact but received no feedback until the end
of the timestep may either wait for a response in the next timestep or give up.
If it gives up, its action would be considered as a missed interaction from its
perspective, and it would remain at its current state. Obviously, a component
that selected a local action does not need a feedback for a its action, since it is
always successful regardless of the other components. In this case the component
immediately changes its state according to the selected local action.

Note that it is not clear what is the goal of each component in this scenario.
Maximizing the individual sum of rewards in this case does not always maximize
social welfare. However, when the reward given to a local action is lower than
a reward of a successful interaction, then an individual maximization of the
accumulated sum of reward should also lead to the optimal result, with respect
to the social welfare. We therefore assumed that local actions are always less
rewarding than interactions in the more advanced model.

In light of this insight, we modified our approach to adapt our advanced
model. We assigned each component’s controller a pair of actor and critic net-
works, and used the same training routine in parallel with respect to each con-
troller. This setup is often called decentralized training [16]. In each one of their
optimization steps, the components obtain their collection of episodes by inter-
acting with each other.

When the different controllers are trained in a decentralized fashion, each
one of them considers the others as the environment. However, while a standard
environment in reinforcement learning has Markovian behavior, our controllers
constantly change their strategies throughout the training phase, completely
invalidating the Markovian assumption on their strategy.

As a result of the constantly changing behavior of the components in the
training phase, we tested different parallel exploration techniques in our exper-
iments. Specifically, we tested the efficiency of different techniques on scenarios
with two components. We started by alternately applying the same exploration
or exploitation policy for both components. i.e. in each optimization step the
two controllers selected their actions according to Boltzmann exploration, or
they both exploited their neural network, selecting the most probable action.

We examined an additional exploration technique. According to this tech-
nique, in every optimization step, only one of the components performs Boltz-
mann exploration, while the other always exploits its network. In the next op-
timization step, the components change their roles with respect to their explo-
ration/exploitation strategies. The idea behind this technique is that the explor-
ing component would be able to learn a more stabilized version of his peer, which
in constantly exploiting, thus acting in a more predictable way.

Finally, the most stable results were achieved where both components were
exploring according to Boltzmann exploration throughout the entire training
phase. It seems that the optimization steps of PPO are small and cautious
enough, so both agents can explore simultaneously and still converge to strate-
gies that maximize their individual cumulative rewards with a relatively high
probability. We observed than this exploration technique is efficient also for sce-

14 Itay Cohen and Doron Peled

narios with more than two components. The results are further described in the
experiments section.

4 Experiments

We present here the experimental results for our proposed approach. The ex-
periments consist of two parts. In the first part we tested our approach with
respect to six existing examples of the simplified model. The second part exam-
ines our extended approach in the more advanced setting. All the experiments
were conducted on the same machine with an Intel® Core™ i5 CPU at 2.4 GHz
and 8GB of RAM, running on a Windows 11 operating system. Our approach
was implemented in Python, using the PyTorch library.

4.1 Experiments with the Simplified Model

In [7], six different examples of system and environment pairs to experiment
with were studied. The first four are relatively simple. The latter two are more
complex, combining the behaviors of two simple examples. The first simple ex-
ample - permitted, was described in Section 2. We present here two additional
simple examples.

In example schedule in Figure 2, the controller must make sure that the
system will never choose an a. Otherwise, after interacting on a, the environment
will progress to e3, and no successful interaction with b will be available further.
A controller with two states that alternates between b and c, i.e., allows exactly
the sequence of interactions (bc)∗ is sufficient to guarantee that no failure ever
occurs.

g1

g2 g3

System

a

b

b

c

e1

e2 e3

e4

Environment

b

c
a

c
a

Fig. 2: schedule: The control needs to avoid the action a as its initial choice.

In the example cases in Figure 3, the system is obliged to offer an a from its
initial state. The environment allows initially only b or c. Hence, the interaction
will fail, the system will stay at the same state and the environment will progress
to e2 or to e3, according to its choice, which is not visible to the system. After

Integrating Distributed Component-Based System through Deep RL 15

the first a, the system does not change state, hence a is again the only action
that it offers.

An optimal controller for this example has to consider the execution history
to make an informed decision. After the system offers the first a, which is due to
fail, it checks whether offering a fails again. If it does, then the next interaction
to be offered is c. Otherwise, it selects the action b.

g1

g2

System

ab, c

e1

e2 e3

e4 e5

Environment

b

ab

c

ca

Fig. 3: cases: Needs to check if a succeeded.

In their experiments, the hyperparameter values that achieved the optimal
results were different for each example. In addition, their training routine for
the complex examples was different comparing to their simpler examples. We
tested our approach against all six examples. The last complex example (cycle
scc) assumed to be the most difficult one, since it had the highest average failure
rate. Table 1 exhibits the properties of the tested experiments.

Experiment Environment States Best Failure Rate (%)

Permitted 3 0
Schedule 4 0
Cases 5 1.5
Choice-scc 25 1.5
Schedule-cycle 4 0
Cycle-scc 25 1.5

Table 1: Experiments list. Failure percentages are per episodes with 200
timesteps.

In our experiments, we used the same training routine for all examples. More-
over, the values of the different hyperparameters in our approach did not vary
between different examples. We trained our actor and critic network as presented

16 Itay Cohen and Doron Peled

in the previous section, with 160 sampled episodes of length of 25 in each opti-
mization phase, for a maximum of 150 optimization phases. In most of the cases,
the optimal policy was found in less than 100 optimization steps.

We used Adam [8] to optimize the weights of both the actor and the critic
networks, with a learning rate of 0.01. Adam is an adaptive learning rate opti-
mization algorithm that has been designed specifically for training deep neural
networks. The PPO clipping parameter ϵ was set to 0.2, and the initial ex-
ploration temperature was T0 = 2 with a geometric decay rate of 1.008. The
discount factor for the calculated reward-to-go was set to γ = 0.99.

We used the same evaluation metric as [7]. For each example, we trained the
model and evaluated it on 100 different episodes of 200 timesteps. We repeated
the training and the evaluation process ten times and calculated the average
failure rate. Table 2 shows a comparison between the average failure rates. Our
approach achieves the same performance as [7] in the first three examples, and
outperforms it in the last three examples.

Experiment Results of [7] Our PPO based Approach

Permitted 0 0
Schedule 0 0
Cases 0 0
Choice-scc 4.5 1.5
Schedule-cycle 5 0
Cycle-scc 33.5 3

Table 2: Average failure rates (%) - the reinforce-based approach vs. our PPO-
based approach.

4.2 Experiments with the Advanced Model

We tested the extension of our approach on examples with multiple components,
with both interactions and local actions. The rewards that were given to failed
and successful interactions were identical to previous experiments. The reward
for local actions was lower than the one given for interactions, and varied be-
tween examples. Each example was tested with respect to two different execution
profiles. The first profile is the case when the two components perform according
to the same speed, while in the second one the execution speed of one compo-
nents is two times faster than the other throughout the whole execution. Here
we did not consider the failure rate, but the average cumulative rewards (CR)
throughout the execution.

We started to test our approach on an example called hold back. It is described
in Figure 4; the action l is a local action in both components, while all the others
are interactions. The reward for local actions was set to 0.5, and the reward for

Integrating Distributed Component-Based System through Deep RL 17

a successful interactions was set to 1. A reward of 0 was given for a missed
interaction, while a failed interaction had a reward of -1.

In this example, both components are faced with three consecutive decisions,
where they have to choose between two options with different payoffs. The opti-
mal result for them may be achieved only if they both choose the least rewarding
course of action at every decision point. In an execution profile where there are
different execution speeds, the faster process may have to wait after the three
first local actions before successfully triggering the action a.

g1

g2

g3

g4

g5 g6

l

a
l

a

l
a

a

c a

e1

e2

e3

e4

e5 e6

l

a
l

a

l
a

a

b a

Fig. 4: hold back: Three consecutive decisions with different payoffs. The action
l is a local action in both components, while all the others are interactions.

The second example we designed is called abcde coordination. It is depicted
in Figure 5. In this example, the maximal cumulative reward of each process is
achieved if both components learn to repeat the following sequence of interac-
tions: a b c d e, where l is a local action. It is not a simple task to coordinate this
pattern of interactions; both components have some self-loop actions that should
be triggered at the right time. Moreover, this task is even more difficult in an
execution profile where the two components have different execution speeds. For
instance, if the component on the right is faster than the other one, an optimal
strategy for it would be utilizing the local actions on its self loops in between in-
teractions, so it can be correlated with the slower component. Here, the rewards
for interactions are identical to the hold back example, and the reward for local
actions was set to 0.1.

The third example we introduce in Figure 6 is called wait to succeed. The
actions l, l1 and l2 are local actions in this example. All the reward values are
identical to the values in abcde coordination, except of the local action reward
that was set to 0.02. As part of the optimal strategy in this example, both com-

18 Itay Cohen and Doron Peled

g1

g2g3

a

b

c

d

e
e1 e2

e3e4

a

e, l

b

e, l

c

e, l

d

e, l

Fig. 5: abcde coordination: A certain repeating sequence leads to a non-failure
execution. l is a local action.

ponents would aim to end the execution with a sequence of consecutive successful
interactions of type d. To achieve that in the equal-speeds execution profile, they
would have to coordinate on the sequence a b c, and then trigger two local ac-
tions before initiate an interaction of type d. Both the preliminary sequence and
the two local actions waiting are necessary towards having a successful sequence
of interactions of type d. Now, the optimal strategy of the left hand side com-
ponent changes assuming it is faster than the other component. It has to utilize
the local actions of from states g2, g3 and g4 to adapt the slower component.

g1 g2

g3

g4

g5 g6

a

l

b

l

c

l
l1

l2

f

d

d

e1

e2

e3

e4

e5

e6 e7

a

b

d
c

d

l
d

l d

d c

Fig. 6: wait to succeed: The two components will have to coordinate with respect
to a specific sequence, then trigger a few local actions before they may continue
with a long sequence of consecutive successful interactions of type d. The actions
l, l1 and l2 are local actions.

Integrating Distributed Component-Based System through Deep RL 19

The fourth example, which is called triple coordination, consists of three
asynchronous components. It is described in Figure 7. The actions l, l1, l2 are
local actions, while all the others are interactions. The reward for local actions
was set to 0.1, and the reward for a successful interaction was set to 1. A reward
of 0 was given for a missed interaction, while a failed interaction had a reward
of -1. In this example, component (a) is able to interact with both components
(b) and (c). However, components (b) and (c) cannot interact with each other.
In order to achieve an optimal performance, component (a) would aim to end
its execution with a sequence of alternating interactions from s1, where f is
offered to component (b), and e is offered to component (c). This execution
suffix would have been possible only if component (a) and (b) had coordinated
on the sequence a b c at the beginning of the execution. We denote the first
execution profile by p1. In this profile, the components have equal speeds. In
the second execution profile, denoted by p2, components (a) and (c) have equal
speeds, while component (b) is two times slower.

e1 e2

e3

e4

e5

(b)

a

b

c

lf

g1

g2 g3

g4

g5

g6

(c)

l2
l1

d

e l

e

f l

s1

s2s3

(a)

e, f

a

d

b

e

c

Fig. 7: triple coordination: The actions l, l1, l2 are local actions, while all the
others are interactions. Component (a) is able to interact with both (b) and (c).
However, components (b) and (c) cannot interact with each other.

Most of the hyperparameter values were identical to previous experiments.
We slightly changed the initial exploration temperature to 2.5, and the geometric

20 Itay Cohen and Doron Peled

decay rate to 1.01. As mentioned before, both components were exploring ac-
cording to Boltzmann exploration throughout the entire training phase. Again,
we trained the controllers and evaluated them on 100 different episodes of 200
timesteps. We repeated the training and the evaluation process ten times.

Experiment Optimal CR Our Avg. CR Our Med. CR
Cp.a Cp.b Cp.a Cp.b Cp.a Cp.b

hold-back-p1 198.80 198.80 155.20 155.20 198.80 198.80
hold-back-p2 98.80 98.80 98.80 98.80 98.80 98.80
abcde-p1 200 200 163.20 163.40 200 200
abcde-p2 100 101 67 67.74 95.60 96.01

w.t succeed-p1 198.04 198.04 158.80 158.02 197.02 197.02
w.t succeed-p2 98.14 98.04 96.85 96.83 97.02 97.02

Table 3: Average and median cumulative rewards - a model with two asyn-
chronous components with local actions.

Table 3 exhibits the experimental results of the first three examples. p1 and
p2 are referred to as the first and the second execution profiles. The table shows
that the average cumulative rewards in most of the experiments are lower than
the optimal ones, while the median cumulative rewards are close or equal to
the optimal values. The reason behind this is the fact that in some repetitions,
the interfaces could not learn their optimal strategies, and had a sub-optimal
performance.

In the hold back example, the optimal strategy was learned in most of the
repetitions. In the second execution profile, the faster component learned to
trigger its three local actions and then to wait for a first successful interaction
of type a.

In abcde coordination, the optimal strategy was achieved in most of the rep-
etitions for the first execution profile. In the second execution profile, the right
component was selected as the faster component. In this profile, the majority
of executions ended with a relatively high cumulative reward. In some cases,
the faster component learned to intermittently select a local action in order to
adapt the slower component. In other cases, it preferred to wait for a successful
interaction rather than intersperse a local action in between.

In the example wait to succeed, the two components managed to learn the
behavior that leads to the optimal results in most of the cases. In the second
execution profile, we selected the left component to be the faster one. In this
profile, a common behaviour for the left component was to select local actions
before trying interactions from states g2 and g3. However, when being in state
g4, the typical behaviour was to wait for a successful interaction of type d.

The performance of our extended approach on the triple coordination exam-
ple is described in Table 4. It shows a comparison between the optimal strat-
egy’s cumulative rewards and the average cumulative rewards according to our

Integrating Distributed Component-Based System through Deep RL 21

extended approach. It is observed that in the first execution profile, the three
components manage to learn the behavior that leads to the optimal result. In
the second execution profile, component (a) learns a strategy that is slightly
less beneficial than its optimal strategy. Despite having different speeds, compo-
nent (a) learns how to alternately interact with components (b) and (c) in the
suffix of the execution.

Experiment Optimal CR Our Avg. CR
Cp.a Cp.b Cp.c Cp.a Cp.b Cp.c

triple coord.-p1 200 191.9 189.9 200 191.9 189.9
triple coord.-p2 152 55.8 109.8 151 55.8 109.8

Table 4: Average cumulative rewards - a model with three asynchronous com-
ponents with local actions.

5 Conclusion

We presented a deep reinforcement learning approach that constructs control for
concurrent components of a system that are capable of interacting with one an-
other, with a limited knowledge of one another’s structure and execution history.
We started by designing an approach that improved on the REINFORCE-based
method used in [7] for the simplified model.

Our approach is an Actor-Critic implementation of the PPO algorithm with
some modifications. We have distinguished between two types of execution his-
tories: short and long term histories, and handled them in different ways. The
short term history was encoded as part of the control’s state space representa-
tion, while the long term history was captured by the recurrent layers we have
integrated in both the actor and the critic networks. In addition, we found an
exploration strategy that suited all the tested examples in our experiments. In
the tested experiments, not only did our approach outperform the method pre-
sented in [7], but it was capable of using a single set of hyperparameter values
and training routine for all tested examples.

We have suggested an architecture for optimizing the integration of systems
that consist of multiple processes. According to this learning-open architecture,
each component is equipped with a local neural network that can be trained to
control its behavior. As the different components can be constructed separately,
the training of the system does not involve the sharing of information between
the deep learning components; each process (and its controller) is aware only of
its own states, and the outcome of the interactions. Hence, deep reinforcement
learning methods such as DQN [11], which focus on estimating the utility value
of each state in the state space are less suitable for our task. We conclude that

22 Itay Cohen and Doron Peled

policy gradient methods such as PPO are more adequate in case of a state space
with limited observability.

Our approach appears to be stable with optimization steps that are relatively
small and rely on full sampled episodes. As opposed to the previously mentioned
approach that relies on a single episode each time, in our approach each opti-
mization step may be more significant. Moreover, the nature of PPO inherently
eliminates the use of a lookahead. We do not need to consider a limited hori-
zon and optimize the parameters after every timestep, it can be done once after
generating a batch of full episodes. On the other hand, in most of the cases,
our approach would need to sample relatively more executions to construct an
effective strategy. Apparently, in this case, the effectiveness and the robustness
of our approach in different scenarios come at a cost.

We realized that our approach requires only a few minor modifications to
adapt to the more advanced setting, even though the Markovian assumption no
longer holds for each component. In the examples we tested, the components
manage to converge towards an optimal outcome with high probability, despite
the scarce signals that are transmitted between the different components. Future
directions of this research include applying this approach to more complex com-
ponents with more states and extended functionality. In addition, our approach
should also be evaluated in settings where maximizing the individual objective
may not lead to the optimal global outcome, e.g., when two or more components
have conflicting objectives.

References

1. Brown, T.B., et al.: Language models are few-shot learners. In: Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020)

2. Busoniu, L., Babuska, R., Schutter, B.D.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C 38(2), 156–172
(2008)

3. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, Second
Edition. Springer (2008)

4. Gößler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55(1-3), 161–183 (2005)

5. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
conference on machine learning. pp. 1861–1870. PMLR (2018)

6. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

7. Iosti, S., Peled, D., Aharon, K., Bensalem, S., Goldberg, Y.: Synthesizing control
for a system with black box environment, based on deep learning. In: International
Symposium on Leveraging Applications of Formal Methods. pp. 457–472. Springer
(2020)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Kravaris, T., Vouros, G.A.: Deep multiagent reinforcement learning methods ad-
dressing the scalability challenge. Appl. Intell. (2023)

Integrating Distributed Component-Based System through Deep RL 23

10. Lehmann, D., Rabin, M.O.: On the advantages of free choice: A symmetric and fully
distributed solution to the dining philosophers problem. In: Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
pp. 133–138 (1981)

11. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

12. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learn-
ing library. In: Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

14. Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction, 2nd Edition.
Adaptive computation and machine learning, MIT Press (2018)

15. Tan, M.: Multi-agent reinforcement learning: Independent versus cooperative
agents. In: Utgoff, P.E. (ed.) Machine Learning, Proceedings of the Tenth Interna-
tional Conference, University of Massachusetts, Amherst, MA, USA, June 27-29,
1993. pp. 330–337. Morgan Kaufmann (1993)

16. Zhang, K., Yang, Z., Liu, H., Zhang, T., Basar, T.: Fully decentralized multi-
agent reinforcement learning with networked agents. In: International Conference
on Machine Learning. pp. 5872–5881. PMLR (2018)

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Integrating Distributed Component-Based Systems through Deep Reinforcement Learning

