ChatGPT in the Loop:
A Natural Language Extension for
Domain-Specific Modeling Languages

Daniel Busch!, Gerrit Nolte!, Alexander Bainczyk!, and Bernhard Steffen!

TU Dortmund University, Department of Computer Science, Chair for Programming
Systems, 44227 Dortmund, Germany
daniel2.busch@tu-dortmund.de, alexander.bainczyk@tu-dortmund.de,
gerrit.nolte@tu-dortmund.de, bernhard.steffen@tu-dortmund.de

Abstract. This paper presents an approach to no-code development
based on the interplay of formally defined (graphical) Domain-Specific
Languages and informal, intuitive Natural Language which is enriched
with contextual information to enable referencing of formally defined en-
tities. The paper focuses on the use and automated integration of these
enriched intuitive languages via ChatGPT-based code generation to ex-
ploit the best of both language paradigms for domain-specific applica-
tion development. To compensate for the lack of control over the intu-
itive languages we apply automated system-level validation via automata
learning and subsequent model checking. All this is illustrated using the
development of point-and-click adventures as a minimal viable example.

Keywords: Software Engineering, Low-Code/No-Code, Language-driven En-
gineering, Large Language Models, Automata Learning, Verification, Prompt
Engineering, Web Application

1 DMotivation and Introduction

GitHub Copilot |16] and ChatGPT [28| have opened a totally new programming
experience: Code for diverse programming languages can be generated from just
a few lines of natural language descriptions, and even simple programs can be
generated fully automatically in a similar fashion. In particular, Large Language
Model (LLM)-based programming exceeds what would have been expected in
the past by far. On the other side, generated code of machine learning models
may have surprisingly severe mistakes. Thus, LLM-based programming is bound
to be supervised.

In this paper, we present an approach to software development based on
the interplay of Domain-Specific Languages (DSLs) and Natural Language (NL)
descriptions. Conceptually, our approach is an extension of Language-Driven En-
gineering (LDE)[15] to allow natural language specifications for process require-
ments. We call a natural language which is contextualized with additional infor-
mation about the domain models a Domain-Specific Natural Language (DSNL).

2 Busch et al.

This special kind of DSLs ensures that users do not need to specify implemen-
tation details, but all necessary information for LLM-based code generation is
contained in the additional context. The role of these languages is sketched in
which we explain along the description of our concept in
We illustrate this concept in using the example of the river crossing
puzzle|3]. In this puzzle a farmer is confronted with the problem to cross the
river with a wolf, a goat, and a cabbage in a boat that is so small that it can
only take one of the three items at a time. In order to avoid damage, the farmer
must make sure that neither the wolf and the goat, nor the goat and the cabbage
are on the same side of the river whilst the farmer is on the other side.

Our accompanying example concerns the automatic generation of a point-
and-click adventure which is won exactly when all the items are safely transferred
from one side of the river to the other. The landscape of the point-and-click
adventure can easily be specified graphically. For our puzzle we only have to
draw the two sides of the river and mutual connections for modeling the potential
boat transfer as shown in This is enough to generate

— a Prompt Frame that provides contextual information to the NL description,
so that it can be used as a DSNL, and

— the code that is meant to be extended by the LLM via code generation and
code merging.

The example used in this paper focuses on the specification of the puz-
zle’s constraints in natural language, enriched to talk about the objects of the
graphical model. These specifications are fed into the Prompt Frame to generate
code that extends the code generated from the graphical model. The resulting
(merged) code can then be deployed to a fully running web application.

Our approach relies heavily on natural language descriptions with all its
ambiguities. This reduces the number of properties which can be validated by
the inherent properties of DSLs alone. As a result, we verify them via black
box checking [6] of the overall system. Concretely, we combine active automata
learning [2} |4l [5] to infer behavioral models of generated applications via testing
and model checking to verify runtime properties formulated in temporal logic.
To achieve a full no-code solution, our generators are implemented to generate
instrumented web applications that are learnable by design |21]. Only the model
checker requires manual input in terms of the property to be verified. In our
example, we consider the property that the farmer can succeed to cross the river
with all three ’items’ while assuring that no damage occurs.

It should be noted that our solution is fully no-code and only requires domain
experts to:

1. graphically model the architectural information,
2. to specify the process logic in natural language, and
3. to observe the feedback of automated model verification.

All of this can be done via an accessible web application which we will make
publicly available for experimentation.

A Natural Language Extension for DSMLs 3

: Modeling & Generation

Generate

= e

Graphical
Model

Extendible
Code

Generate

Application
Code

Embed in [

Natural Language Prompt Code
Description Frame

Improve Model Verify Infer A
i Checking Learning

Behavioral

Model Formal Verification !

Fig. 1. Concept overview.

Outline. In we introduce the three fundamental topics of this paper,
LDE, LLMs in the context of programming, and learning-based testing. From
there, we introduce the concept of utilizing natural language in a domain-specific
environment in and present implementation details in the context of
an exemplary implementation in [Section 4] [Section 5| discusses the potential
and drawbacks of the presented approach and also compares our contribution
to related work. Finally, concludes the paper, giving an overview,
reflecting on the presented approach, and providing ideas for future work.

2 Preliminaries

DSLs and Natural Language Processing (NLP) are two very different approaches
to interacting with machines. Each of these approaches has advantages and dis-
advantages. However, both their advantages and their disadvantages seem to be
complementary. This is one of the main reasons why our approach attempts to
merge the two paradigms to create one that benefits from the advantages of both
while trying to overcome their disadvantages.

This section provides a brief overview of DSLs and NLP and describes their
advantages and disadvantages. In addition, learning-based testing is presented as
a means to enable a validation feedback loop for users using DSNLs in a no-code
environment.

4 Busch et al.

2.1 Language-driven Engineering

LDE is a paradigm that brings DSLs into focus for solving problems in specific
domains [15] 17, [24]. Tt aims to provide multiple DSLs for each subproblem or
stakeholder within a domain. This is done by decomposing potential solutions
into independent DSLs that still have a high degree of interplay with each other
to provide powerful tools that can be used to solve problems with ease.

The approach in this paper also follows an LDE approach. But instead of
decomposing a single DSL into multiple DSLs, this paper’s approach uses natural
language within a domain-infused context. This concept of decomposition is
further elaborated in

2.2 LLMs & Programming

Perhaps most famously brought to mainstream attention by ChatGPT, LLMs
such as LLaMa [32], GPT1 through GPT4 [25], PaLM [18] etc. have led to
rapid progress in natural language processing. Most commonly, LLMs are used
as generative models, taking in a natural language description and returning
some form of output, such as text (ChatGPT), images (Stable Diffusion [19]),
audio (MusicLM [20]) or, most importantly for this work, code.

Modern LLMs have shown increasingly promising performances with regards
to code generation, with model performance steadily increasing. As an example,
GPT-4 |28] reached a score of 67% on the Human-Eval dataset [16] where GPT-
3.5 only reached 48.1%.

2.3 Learning-Based Testing

Learning-based testing [7] is an approach to fully automated testing of black-
box systems using Active Automata Learning [2]. In this context, active learning
refers to a process in which a so-called learner interacts directly with a System
Under Learning (SUL) via its public interfaces. By posing automatically con-
structed test queries over some input alphabet and recording the reactions of
the SUL, automata models representing the system behavior can be inferred.
Often, learning is combined with model checking to automatically verify sys-
tem properties on inferred models. The practice of testing web applications via
learning-based testing also has a long history in research [8} |9} |11} (12} |17], where
Mealy machines proved to be an adequate representation for verifying user-level
specific system properties.

Learning web applicationsﬂ typically requires users to specify an input al-
phabet and implement system-specific mappers [10] that provide an interface for
learning algorithms to interact with the target SUL. To address this problem,
[21] introduces the learnability-by-design framework, which includes the instru-
mentation DSL iHTML. The language enables developers to instrument HTML

! In this work, the term learning refers to the use of active automata learning and is
not related to the field of deep learning or other Al-based approaches.

A Natural Language Extension for DSMLs 5

code in a way that allows learning algorithms to incrementally mine behavioral
models simply by analyzing the Document Object Model (DOM) of the website,
without explicitly specifying an input alphabet.

3 Concept

In this section, we introduce a method for code generation that produces code
from combined DSL and natural language descriptions. The core concept of this
approach is twofold:

1. providing additional domain information to the LLM to generate code that
satisfies specific requirements so that it can be used contextually, and
2. extending code that has been generated by traditional code generation.

With reference to the user creates the graphical model and auto-
matically generates the extensible code and the prompt frame from it. Next,
they can use NL to describe additional program logic that is embedded in the
prompt frame so that the LLM can generate code from it. This code is then auto-
matically merged into the previously generated extensible code of the graphical
model, which together form the resulting application code. Automatic valida-
tion is performed on the running instance of the application, which outputs an
automaton of accessible system states and can be used to provide feedback to
the user using model checking on this automaton.

3.1 Goals

Code generation from formally defined DSLs is well-understood and scalable, in
contrast to code generation with LLMs which, at least today, lacks

Control. In general it is hard to predict whether the generated code will be
syntactically correct, let alone that it solves the intended task.

Scalability. Feasible problem descriptions are strongly limited in size and con-
ceptual complexity.

To deal with these weaknesses, our approach is designed to only require the gen-
eration of small, clearly defined code blocks from natural language that are as
independent as possible from the rest of the code-base (which is generated in a
structured, rigorous fashion from a DSL model). Of course, we cannot guarantee
semantic correctness even for these small code blocks, but we can assure that
their aspect-oriented integration maintains executability. This allows us to vali-
date runtime properties of the resulting applications using black-box checking.

3.2 Language Integration

Our approach is characterized by decomposing the overall specification into a
formal and an intuitive part, both supported by dedicated DSLs. Such a de-
composition is typical for LDE, but the required language integration is new.

6 Busch et al.

It requires special care to let ChatGPT generate code that is ready for aspect-
oriented merging with code generated from the graphical model. It is the role
of the Prompt Frame to guarantee that the code generated by the LLM fits
the code generated by the graphical DSLs. In particular, it must use the same
programming language and utilize the desired functions and global variables.

3.3 Contextualization

To actually use the formal properties of DSLs in an LLM environment, the LLM
needs further information about the context for which it should generate code.
Thus, the actual prompt must be primed with information about its expected
behavior, constraints and details about the graphically modeled instances, and
about the expected output code. We call this priming information, into which
the user prompt will later be embedded, the Prompt Frame.

Since the LLM’s output code is expected to extend the code generated by
the DSLs, the LLM is also provided with code stubs and descriptive comments.
As a consequence, the Prompt Frame also contains this information about the
expected output structure. We call this sub-frame, into which the LLM fills
its code, the Generation Frame. The example in takes advantage of
aspect-oriented extensions by using this ensured LLM output structure.

The following paragraphs describe the Prompt Frame and its Generation
Frame part in more detail, including their goals and overall purpose.

Prompt Frame. The Prompt Frame should serve two purposes: (1) to provide
the LLM with information about the concrete model instances of the DSLs, and
(2) to communicate requirements for the generated code that go beyond the
general structure provided by the Generation Frame.

The information provided to the LLM should include, for example, informa-
tion about available states and global variables, as exemplified in
Any entity that has been modeled in an accompanying DSL and that should be
able to interact with the logic prompts fed into the LLM should be mentioned
in the prompt frame. Other information may include the desired programming
language, or that the LLM should output only code and no supporting text.

Generation Frame. The Generation Frame is a part of the Prompt Frame and
consists of code parts that the LLM should fill-in, as seen in[Listing 1.2} It is used
to ensure that the LLM outputs exactly the functions with the correct signatures
that are needed by the DSLs’ generated code, which enables the code generated
by the DSLs to safely call the functions implemented by the LLM. This allows
for easy extensions of the underlying program in an aspect-orientated fashion.

Information about which code is expected in each function is provided
through comments or as additional descriptions in the outer Prompt Frame.
Besides, LLMs are also able to extract semantic information from the names
and signatures of functions and fill in code accordingly.

A Natural Language Extension for DSMLs 7

3.4 Validation & Feedback

In the context of this work, we leverage iHTML in our approach by embedding
learnability-by-design practices into our manually implemented code generator,
which generates the code frame for the LLM-based generator from our DSL. As
a result, arbitrarily generated applications are automatically learnable, allowing
us to infer behavioral models that represent user-level interaction processes. For
verification purposes, desired system properties can be formulated in temporal
logic, Computation Tree Logic (CTL) [1] in our case, to automatically verify
learned models with a model checker. Feedback from the model checker is used
to refine the natural language prompt, as discussed in

4 Example Implementation

This section shows a sample implementation of the concept presented in this
paper. For this, the point-and-click adventure mentioned before is implemented.
In our scenario it consists of a puzzle with two locations: the left and the right
side of a river. At the beginning there are three objects on the left side of the
river: a wolf, a goat and a cabbage. The game is won when all three items have
been moved to the right side in a fashion satisfying the following constraints:
The player can only take one item at a time and at no time the wolf and the
goat or the goat and the cabbage are on the same side of the river while the
player is on the other side. To implement this puzzle, we chose the graphical
DSL Webstory, created with the IME workbench Cinco.

As the title of this paper suggests, the LLM used for this example is ChatGPT
in its API version ”gpt-3.5-turbo”. Conceptually, this choice is not important,
but the use of other LLMs may well lead to different results.

Fig. 2. Examplary WebstoryGM model on Cinco product level.

8 Busch et al.

4.1 Model Decomposition

When creating a point-and-click adventure, two aspects are most important:
(1) the design of each game screen and its reachability, and (2) the game logic
about when the game is won or lost, as well as the existence and behavior of
game objects. Following our approach, we decompose our example into Websto-
ryGM, a graphical DSL to model game screens and transitions between them and
WebstoryNL, the domain-specific natural language to express the game logic:

— WebstoryGM is suitable to visually specify a high level overview of the game
with game screens as images that are actually used in the game, and arrows
to model their connections.

— WebstoryNL allows to describe the win and lose conditions using natural
language without requiring any form of formalization.

4.2 Graphical Modelling

In its original version, Webstory includes three basic elements for modeling point-
and-click adventures: screens, click areas, and transitions. Using these three types
of elements, users can define images for game screens and where to click to trig-
ger transitions to different screens. In addition, the original version of Webstory
allows users to graphically model game logic. This can be done using graphical
representations for variables and adding guards to transitions to change the be-
havior of screen transitions depending on the overall state of the game. However,
implementing game logic using the graphical method is rather tedious, and its
semantics cannot be immediately deduced by just looking at the model.

As described in WebstoryGM should only be used to create a
sitemap-like overview of all available game screens and their general reachabil-
ity for this example. Thus, the original Webstory has been modified to contain
only screens and transitions, resulting in the desired WebstoryGM. These two
elements allow the user to create such a sitemap from which all the information
needed to generate the base code, the Prompt Frame and the Generation Frame
can be derived. In addition, game screens for a losing and a winning state have
been added. These screens don’t need to be modeled by the user, as they are im-
plicitly accessible when the player reaches a winning or losing state, as specified
by the natural language description of the game logic.

Figure 2| shows an example model for the river crossing puzzle. It consists
only of the left and right sides of the river, starting on the left side.

4.3 Prompt Frame & Generation Frame

The game’s logic should be described and generated using natural language
and ChatGPT as an LLM. To be able to extend the underlying game modelled
using the WebstoryNL as described earlier in the Prompt Frame, as

seen in [Listing 1.1] contains the following information:

— names of the available game screens

A Natural Language Extension for DSMLs 9

Your task is to fill in code as part of a larger JavaScript code base.
You can fill in multiple blocks, each having a specific purpose.

Larger context for code: a point-and-click adventure with state
transitions. All code that you write is part of a game with
attributes states=["leftRiver", "rightRiver"] and currentState
which holds the currently visited river side and is therefore one
of either values of states. These attributes are already written
and you can safely assume that the rest of the code works as
intended.

Purpose of your code: Fill in the game logic based on a text prompt.
Game objects beside states and currentState should be objects
having a name, and potentially multiple transition objects that
contain a screen property which is the name the transition can be
triggered on, and a function property which is the transition
function for this screen. Game objects are considered present in a
state if they possess the currentScreen property of the state.

The code blocks for you to implement:

// [...]1, see Listing 2

Prompt: // [...], see Listing 3

Answer as follows: Write down ONLY the filled in code blocks with the
code that you seem fit. Add comments if you want but do NOT explain

anything about the code, your answer should ONLY contain javascript
code.

Listing 1.1. Excerpt of the generated Prompt Frame.

— the desired programming language; in this case JavaScript

— a general directive that should be concise and produce nothing more than
the desired code, so it can be easily merged with the code of the graphical
models

— expected general properties like the already implemented transitions that
are derived from the game objects the LLM should provide, or the general
scenario of a point-and-click adventure

As another part of the Prompt Frame, the LLM is provided with code stubs,
as illustrated in it has to fill-in as part of the Generator Frame. This
Generator Frame comprises

— the function initVariables() for game objects, checkWin() and
checkLoss () for implementations of the winning and losing conditions

— Comments with further information about the expected game objects or to
mark the positions where the LLM-generated code has to be inserted.

The Prompt Frame (including the Generation Frame) is sufficient to prime
ChatGPT in a way that it generates code that is ready to be merged into the
code generated from the WebstoryGM model.

10 Busch et al.

function initVariables() {
// state objects should be of the following form
// this.gameObjects = [

// {

// name: ’someName’,

// currentScreen: ’someState’,
// transitions: [

// {

// screen: ’someState’,
// function: () => ()
// }

// Jo

// }

// 1]

// they can possess multiple transitions and are only
// rendered on screens they have transitions for

this.gameObjects = [1; // fill in
}

function checkWin() { // fill in }

function checkLoss() { // £fill in }

Listing 1.2. The example Generation Frame.

On the left side of the river there are a wolf, a goat, and a cabbage.

The game is won if every object has been brought to the right side of
the river.

The game is lost if the wolf and the goat are on the same side of the
river, while the player is on the other side, or if the cabbage and
the goat are on the same side of the river while the player is on
the other side.

Listing 1.3. Example for a natural language description.

4.4 Resulting Web Application

Once the user has modeled the WebstoryGM model as in and generated
the extensible code and prompt frame from it, the DSNL prompt can be added
to state the desired game logic.

An example prompt to let ChatGPT implement the game logic of the river
crossing example can be seen in Once the prompt has been in-
serted into the prompt frame, it can be sent to ChatGPT either through its
APT or through the web interface. ChatGPT will only respond with the de-
sired JavaScript code which is then merged into the base code generated from
the graphical model. Two screens of the resulting example game can be seen in
Figure 3|

After automatic deployment, the desired point-and-click adventure is ready
to use. Initially, the player sees the screen of the left side of the river where the
wolf, the goat, and the cabbage are represented as buttons which, when clicked,

A Natural Language Extension for DSMLs 11

Fig. 3. The initial game screen (left) after full code generation and the screen after
taking the goat to the right riverside (right).

transfer the corresponding object and the player to the other side of the river. In
addition to the buttons, ChatGPT has also implemented the checkWin() and
checkLoss () functions that check after each step whether the game is won or
lost. If one of these conditions holds, the corresponding win or loss screen is
displayed.

4.5 Model Learning & Verification

After deploying the generated web application, we can learn the instance using
Malwa, the tool introduced in to learn instrumented web applications just
by providing the URL to the server where the application is deployed to the
tool. Note that, because of the instrumentation, we do not need to specify an
input alphabet for the learning algorithm, as it is build incrementally just by
analyzing and observing the DOM of the website. The learning process results
in the eleven-state automaton displayed in It represents the user-level
interaction graph that results from the interactions with the user interface of the
Webstory product by clicking on the generated buttons. We represent models
using Moore automateﬂ to simplify model checking and visual analysis, since
each state is linked to exactly one screenshot, thus accurately reflecting user-
level interactions with the website.

Upon visual inspection, one can see that the generation resulted in an ap-
plication that adheres to the constraints formulated in our natural language

2 Moore automata are semantically equivalent to Mealy automata which are the stan-
dard target automaton type for active learning of web applications.

12 Busch et al.

mmmmmmmmmmmmmmmm

cick rightRverempy

of
St

P

Lost

Fig. 4. Learned model of the generated Webstory.

prompt and that the game can be played as intended. The property that it is
possible to win the game can also easily be seen as the won screen is reachable in
the learned model. For larger models, model checking is an ideal means to ver-
ify such properties. Our solution supports CTL model checking using our model
checker GEAR for this purpose. Currently, this requires the manual specification
of the intended formula which, in particular, may still require to identify dynam-
ically generated atomic propositions, a task that we are aiming to automatically
support in the future.

5 Discussion and Related Work

Unsurprisingly, the novel ability to both understand and generate code from
natural language descriptions (although still limited) has attracted attention
from the software engineering community.

A Natural Language Extension for DSMLs 13

At present, applications of LLMs in software engineering are in very early
stages and most work on LLMs and their role in software development focuses on
supportive applications in traditional software engineering contexts [22]. In most
of these works, LLMs are not tasked with full code generation but predominantly
with tasks such as: Explaining code to a human, providing feedback to a human,
finding potential bugs in human-written code or generating small-scale helper
functions. Moreover, most of these works focus on applications of ChatGPT as
it is one of the strongest and most widely used LLMs at present.

The authors of [31] apply ChatGPT to a range of code generation benchmark
tasks as well as supporting tasks such as code summarization, bug fixing and
program repair. They note that, while ChatGPT is neither able to repair, explain
or generate programs reliably on its own, it can often provide a range of possible
solutions from which an expert programmer can choose an adequate one and
propose ChatGPT as ”programming support“ in software engineering. In this
context, [26] propose a continuous improvement cycle where code generated by
the LLM is model checked and counterexamples are fed back to the LLM to
incrementally improve the generated code until all properties are satisfied.

Quite similarly, the authors of |30] evaluate ChatGPT’s performance on bug
fixing and program repair and, again, find empirically that performance is only
adequate if a human programmer works in tandem with ChatGPT.

This point of view is also reflected in current industrial applications. Commer-
cial tools such as GitHub Copilot [27] show that this is currently the predominant
application of LLMs in software engineering.

An approach to using LLMs for the entirety of software development has been
investigated by [23]. They investigate the potential of using LLMs for design,
code generation, and testing processes. From their findings and their case study,
they derive challenges to be addressed and possible future scenarios for LLM-
based software engineering.

Larger-scale code generation has been attempted by AutoGPT [29]. Using
specific prompts, AutoGPT forces ChatGPT to divide a larger task into multiple
subtasks and iterate upon its earlier results to solve more complex problems in
a divide and conquer fashion.

The idea to decompose a complex programming task into small pieces is
similar to our approach, but the means are different: Whereas AutoGPT uses
ChatGPT for handling the decomposition also, we use a formally defined DSL
which provides us with better control and scalability. In particular, we can guar-
antee the executability of the overall generated application, a precondition to
apply black-box checking.

We are not aware of any approach that aims at a similarly holistic integra-
tion of natural language-based specifications into a (no/low code) development
framework.

14 Busch et al.

6 Conclusion

We have presented an approach to no-code development based on the interplay
of formally defined (graphical) Domain-Specific Languages and informal, intu-
itive Natural Language which is enriched with contextual information to enable
referencing of formally defined entities. Our implementation within the LDE
ecosystem which is designed to support application development using multiple
DSLs has illustrated how one can exploit the best of the two language paradigms:

— the control provided by the graphical DSL to ensure executability of the
developed application, a precondition to apply black-box checking for vali-
dation, and

— the ease of prompting ChatGPT with natural language which enables people
without any computational knowledge to specify process requirements.

Technically, our approach depends on enhancing the code generator for the
graphical modeling language to also generate an appropriate prompt frame that
guarantees that the code generated from the natural language specification can
be merged into the code generated from the graphical model while guaranteeing
that the resulting application is executable.

Our approach has been illustrated in detail using the development of point-
and-click adventures as minimal viable application scenario. More concretely,
we stepwise developed a point-and-click adventure that is inspired by the river
crossing puzzle.

Guaranteed executability is essential to provide non-technical users also with
no-code validation, but it is not sufficient as the required automata learning
typically requires to provide a dedicated learning alphabet. In our application
scenario, the code generator guarantees that the generated applications are learn-
able by design: the required learning alphabet can be incrementally deduced from
the Document Object Models (DOM) as part of the learning process. In contrast,
the subsequent model checking requires the manual specification of the intended
formula which, in particular, may still require to identify dynamically generated
atomic propositions. We are currently investigating how far this identification
can be automated.

The enormous potential of intuitive specifications became evident with the
recent development of LLMs, and we are only at the beginning of understanding
what their combined power with formal specifications might be. In this paper
we have shown how to gain some control over LLM-generated code by embed-
ding it into ’traditionally’ generated code. This has allowed us to guarantee the
executability of the generated overall applications, a precondition for applying
validation techniques like black box checking. We are convinced that this kind
of embedding LLM-based code generation into formal methods-based applica-
tion development is a promising way to exploit the power of natural language
specification while taming its shortcomings.

A Natural Language Extension for DSMLs 15

References

1]

[10]

E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifications”.
In: ACM Trans. Program. Lang. Syst. 8.2 (Apr. 1986), pp. 244-263. DOT:
10.1145/5397.5399.

Dana Angluin. “Learning regular sets from queries and counterexamples”.
In: Information and Computation 75.2 (1987), pp. 87-106. DOI: https:
//doi.org/10.1016/0890-5401(87)90052-6.

Peter Burkholder. “Alcuin of York’s Propositiones ad acuendos juvenes:
Introduction, Commentary & Translation”. In: History of Science € Tech-
nology Bulletin 1.2 (1993).

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computa-
tional Learning Theory. Cambridge, MA, USA, 1994. 1SBN: 0-262-11193-4.
José L. Balcédzar, Josep Diéaz, and Ricard Gavalda. “Algorithms for Learn-
ing Finite Automata from Queries: A Unified View”. In: Advances in Al-
gorithms, Languages, and Complezity. 1997, pp. 53-72.

Doron Peled, Moshe Y Vardi, and Mihalis Yannakakis. “Black box check-
ing”. In: International Conference on Protocol Specification, Testing and
Verification. Springer. 1999, pp. 225-240.

H. Hungar, T. Margaria, and B. Steffen. “Test-based model generation
for legacy systems”. In: Test Conference, 2003. Proceedings. ITC 2003.
International. Vol. 1. Oct. 2003, pp. 971-980. DOI: [10.1109/TEST. 2003.
1271205,

Harald Raffelt, Bernhard Steffen, and Tiziana Margaria. “Dynamic Test-
ing Via Automata Learning”. In: Hardware and Software: Verification and
Testing. Ed. by Karen Yorav. Vol. 4899. Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2008, pp. 136-152. DO1:(10.1007/978-
3-540-77966-7_13|

Harald Raffelt et al. “Dynamic testing via automata learning”. In: Inter-
national Journal on Software Tools for Technology Transfer (STTT) 11.4
(2009), pp. 307-324. 1sSN: 1433-2779. DOI: http://dx.doi.org/10.1007/
s10009-009-0120-7.

Bengt Jonsson. “Learning of Automata Models Extended with Data”. In:
Formal Methods for Eternal Networked Software Systems: 11th Interna-
tional School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18,
2011. Advanced Lectures. Ed. by Marco Bernardo and Valérie Issarny.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 327-349. ISBN:
978-3-642-21455-4. DOI: |[10.1007/978-3-642-21455-4_10. URL: https:
//doi.org/10.1007/978-3-642-21455-4_10.

Johannes Neubauer, Stephan Windmiiller, and Bernhard Steffen. “Risk-
Based Testing via Active Continuous Quality Control”. In: International
Journal on Software Tools for Technology Transfer 16.5 (2014), pp. 569—
591. DOI: [10.1007/s10009-014-0321-6.

https://doi.org/10.1145/5397.5399
https://doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/TEST.2003.1271205
https://doi.org/10.1109/TEST.2003.1271205
https://doi.org/10.1007/978-3-540-77966-7_13
https://doi.org/10.1007/978-3-540-77966-7_13
https://doi.org/http://dx.doi.org/10.1007/s10009-009-0120-7
https://doi.org/http://dx.doi.org/10.1007/s10009-009-0120-7
https://doi.org/10.1007/978-3-642-21455-4_10
https://doi.org/10.1007/978-3-642-21455-4_10
https://doi.org/10.1007/978-3-642-21455-4_10
https://doi.org/10.1007/s10009-014-0321-6

16

[12]

[13]

Busch et al.

Alexander Bainczyk et al. “Model-Based Testing Without Models: The To-
doMVC Case Study”. In: ModelEd, TestEd, TrustEd: Essays Dedicated to
Ed Brinksma on the Occasion of His 60th Birthday. Ed. by Joost-Pieter
Katoen, Rom Langerak, and Arend Rensink. Cham: Springer International
Publishing, 2017, pp. 125-144. poI: 10.1007/978-3-319-68270-9_7.
Michael Lybecait et al. “A tutorial introduction to graphical modeling and
metamodeling with CINCO”. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation. Modeling: 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part I
8. Springer. 2018, pp. 519-538.

Stefan Naujokat et al. “CINCO: a simplicity-driven approach to full gener-
ation of domain-specific graphical modeling tools”. In: International Jour-
nal on Software Tools for Technology Transfer 20 (2018), pp. 327-354.
Bernhard Steffen et al. “Language-driven engineering: from general-purpose
to purpose-specific languages”. In: Computing and Software Science: State
of the Art and Perspectives (2019), pp. 311-344.

Mark Chen et al. “Evaluating large language models trained on code”. In:
arXiv preprint arXiv:2107.03374 (2021).

Alexander Bainczyk et al. “Towards Continuous Quality Control in the Con-
text of Language-Driven Engineering”. In: Leveraging Applications of For-
mal Methods, Verification and Validation. Software Engineering. Ed. by
Tiziana Margaria and Bernhard Steffen. Cham: Springer Nature Switzer-
land, 2022, pp. 389-406. 1SBN: 978-3-031-19756-7.

Aakanksha Chowdhery et al. “Palm: Scaling language modeling with path-
ways”. In: arXiv preprint arXiv:2204.02311 (2022).

Robin Rombach et al. “High-resolution image synthesis with latent diffu-
sion models”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2022, pp. 10684-10695.

Andrea Agostinelli et al. “Musiclm: Generating music from text”. In: arXiv
preprint arXiv:2301.11325 (2023).

Alexander Bainczyk. “Simplicity-Oriented Lifelong Learning of Web Ap-
plications”. [work in progress|. PhD thesis. Dortmund, Germany: TU Dort-
mund University, 2023.

Adna Beganovic, Muna Abu Jaber, and Ali Abd Almisreb. “Methods and
Applications of ChatGPT in Software Development: A Literature Review”.
In: Southeast Europe Journal of Soft Computing 12.1 (2023), pp. 08-12.
Lenz Belzner, Thomas Gabor, and Martin Wirsing. “Large Language Model
Assisted Software Engineering: Prospects, Challenges, and a Case Study”.
In: This Volume (2023).

Steve Boflelmann. “Evolution of Ecosystems for Language-Driven Engi-
neering”. PhD thesis. Dortmund, Germany: TU Dortmund University,
2023. DOoI1: 10.17877/DE290R-23218.

Sébastien Bubeck et al. “Sparks of artificial general intelligence: Early
experiments with gpt-4”. In: arXiv preprint arXiv:23038.12712 (2023).

https://doi.org/10.1007/978-3-319-68270-9_7
https://doi.org/10.17877/DE290R-23218

A Natural Language Extension for DSMLs 17

Yiannis Charalambous et al. A New Era in Software Security: Towards
Self-Healing Software via Large Language Models and Formal Verification.
May 2023. DOI: 110.48550/arXiv.2305.14752.

GitHub. GitHub Copilot. https://copilot.github.com/. Accessed: July
21, 2023. 2023.

OpenAl. “GPT-4 Technical Report”. In: ArXiv abs/2303.08774 (2023).
Toran Bruce Richards. Auto-GPT: An Autonomous GPT-4 Experiment.
Accessed: 21/07/2023. 2023. URL: https://github.com/Significant-
Gravitas/Auto-GPT.

Dominik Sobania et al. “An analysis of the automatic bug fixing perfor-
mance of chatgpt”. In: arXiv preprint arXiv:2301.08653 (2023).

Haoye Tian et al. “Is ChatGPT the Ultimate Programming Assistant—How
far is it?” In: arXiv preprint arXiv:2304.11938 (2023).

Hugo Touvron et al. “Llama: Open and efficient foundation language mod-
els”. In: arXiv preprint arXiv:2302.13971 (2023).

https://doi.org/10.48550/arXiv.2305.14752
https://copilot.github.com/
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

	ChatGPT in the Loop: A Natural Language Extension for Domain-Specific Modeling Languages

