
Continuous Engineering for Trustworthy
Learning-enabled Autonomous Systems.⋆

Saddek Bensalem1, Panagiotis Katsaros2, Dejan Ničković3, Brian Hsuan-Cheng
Liao4, Ricardo Ruiz Nolasco5, Mohamed Abd El Salam Ahmed6, Tewodros A.
Beyene7, Filip Cano8, Antoine Delacourt9, Hasan Esen4, Alexandru Forrai10,

Weicheng He1, Xiaowei Huang11, Nikolaos Kekatos2, Bettina Könighofer8, Michael
Paulitsch12, Doron Peled13, Matthieu Ponchant9, Lev Sorokin7, Son Tong14, and

Changshun Wu1

1 University Grenoble Alpes, VERIMAG, Grenoble, France
2 School of Informatics, Aristotle University of Thessaloniki, Greece

3 AIT Austrian Institute of Technology, Vienna, Austria
4 DENSO AUTOMOTIVE Deutschland GmbH, Eching, Germany

5 RGB Medical Devices, Spain
6 Siemens EDA, Cairo, Egypt

7 fortiss GmbH, Munich, Germany
8 Graz University of Technology, Graz, Austria

9 Siemens Industry Software SAS, France
10 Siemens Digital Industries Software, The Netherlands

11 University of Liverpool, Liverpool, U.K.
12 Intel Labs, Germany

13 Bar Ilan University, Israel
14 Siemens Industry Software NV, Belgium

Abstract. Learning-enabled autonomous systems (LEAS) use machine learn-
ing (ML) components for essential functions of autonomous operation, such as
perception and control. LEAS are often safety-critical. The development and in-
tegration of trustworthy ML components present new challenges that extend be-
yond the boundaries of system’s design to the system’s operation in its real en-
vironment. This paper introduces the methodology and tools developed within
the frame of the FOCETA European project towards the continuous engineering
of trustworthy LEAS. Continuous engineering includes iterations between two
alternating phases, namely: (i) design and virtual testing, and (ii) deployment
and operation. Phase (i) encompasses the design of trustworthy ML components
and the system’s validation with respect to formal specifications of its require-
ments via modeling and simulation. An integral part of both the simulation-based
testing and the operation of LEAS is the monitoring and enforcement of safety,
security and performance properties and the acquisition of information for the
system’s operation in its environment. Finally, we show how the FOCETA ap-
proach has been applied to realistic continuous engineering workflowsfor three
different LEAS from automotive and medical application domains.

Keywords: Learning-enabled Autonomous Systems · machine learning · safety
· security · continuous engineering · formal analysis.

⋆ Acknowledgment: This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 956123.



2 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

1 Introduction

The crucial criteria for the design of learning-enabled autonomous systems (LEAS) are
correctness and safety, especially for real-world operability. The complexity of LEAS
stems, to a large extent, from the interplay between classically engineered and learning-
enabled components (LECs). In current design practice, correctness and safety are for-
mulated by requirements that must be satisfied by the LEAS. However, the presence of
LECs is not addressed in an adequate manner in this context; there is need for new de-
sign, verification and validation (V&V) approaches that take into account the presence
of LECs in LEAS, address their qualitative and quantitative capabilities throughout their
entire life cycle and consider the real-world complexity and uncertainty.

A holistic engineering approach will adequately assess the correctness and safety
of LEAS operating in the real world. Such an analysis requires that the engineering
method employed will determine the (quantitative) contexts in which the correctness
and safety of systems will be (qualitatively) evaluated. Integrating system design and
operation sets more specific considerations for LEAS and the engineering approach:
their safety will have to be assessed with respect to an ever evolving set of (critical)
scenarios, instantiating difficult conditions for their sensors and underlying algorithms.

In the FOCETA project, we provide a holistic methodology for designing and ad-
dressing the correctness and safety of LEAS, bridging the gap between the currently
applied development, verification, and validation techniques for LE systems and their
operation in the real world. We allow updates to the LECs, in response to emerging re-
quirements from new scenarios, imperfect knowledge of the machine learning models
(noise in data observations) or contextual misbehavior of them and possible security
threats. This need is addressed within a continuous development and testing process
mixing software development and system operations in iterative cycles.

In this process, formal specifications allow designers to formulate requirements in
a rigorous manner. They are used throughout the whole system life-cycle, both during
development and operations. During the concept design phase, formal specifications
can improve the process of engineering requirements by making them precise. This fa-
cilitates communication between design teams, removes ambiguities in the exchange of
knowledge and renders the requirements verifiable. During the system implementation,
specifications can be used for formal verification of critical components, but also as
oracles in the testing activities. Finally, formal specifications can be monitored during
system operation to detect violations of requirements (runtime verification) and take
corrective actions (runtime enforcement). The role of specification languages, fairly
well understood in the context of classical system design, is more ambiguous when
reasoning about LEAS. The addition of LECs considerably adds to the system’s com-
plexity and requires rethinking the entire development and operation process, including
the role of formal specifications, which we explain in this document.

The FOCETA methodology (Figure 1) includes two design flows. The first for de-
signing trustworthy LECs, and the second for integrating them with classically engi-
neered components, resulting in correct and safe LEAS, through iterative cycles of
development and system operation. Our methodology relies on verifying simulation
results and collecting additional data for system improvement. Runtime monitoring is
used to supervise LEAS decision-making and record environmental situations.



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 3

Fig. 1: Continuous development and operations of LEAS

The contributions of this paper are the following. First, we introduce the main goals
of the two design flows. Then, we present the key technological developments, i.e. the
methods and tools, that are the most representative for realizing our methodology:

– techniques for trustworthy perception, sensing and safe data-driven control
– a technique for trustworthy updates of LECs
– a methodology and tool for continuous specification, validation and update of LEAS

requirements
– a compositional digital twin architecture and tools for the formal modeling, simulation-

based analysis and runtime verification of LEAS
– techniques for efficient virtual testing
– specification mining techniques for learning system properties while the LEAS op-

erates in its environment
At the end, we show how these techniques are combined in LEAS case studies.

2 Design Flow for Trustable Learning Components

Deep learning is a mathematical framework for inferring (predictive) models from data.
Its main feature is to use the prediction score as a feedback signal to adjust the weights’
value slightly in a direction that will lower the loss score. This tuning is an optimization
process which implements the leading deep learning algorithm to design the neural
network model. Machine learning can be considered as input-target matching, done by
observing different examples of inputs and targets. The learning process consists of
finding a set of values for the weights for all the network layers that correctly match
the inputs to their associated targets. Finding the correct value for each of them can
seem like a daunting task, since changing the value of one parameter will affect the



4 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

behavior of all the others; a deep neural network can contain more than a trillion of
parameters [33].

A network with a minimal loss is one for which the outputs are as close as possible
to the targets, i.e. a trained network. Initially, the network weights are assigned random
values, so the network implements a series of random transformations; its output is far
from what it should ideally be and the loss score is very high. However, the weights
are adjusted in the correct direction and the loss score is decreased. This training loop,
repeated several times, yields weight values that minimize the loss function. This itera-
tive process only considers the optimization of the resulting neural network model. We
propose, in a complementary way, rigorous methods and tools that guarantee the trust-
worthiness of the neural network model obtained at the end of this iterative process.

The rigorous design approach for developing a safe and trustworthy LEC heavily
depends on the LEC’s functionality. We consider mainly two classes of LECs - percep-
tion modules and data-driven controllers. Designing a trustworthy perception module is
very different from designing a safe data-driven controller. Also, within the context of
continuous engineering, we address the problem of replacing LECs with others.

2.1 Trustworthy Perception and Sensing

An object detection component based on a neural network (NN) does not admit a natu-
ral formal specification of its expected behavior and characterizing a correct perception
module’s behavior using mathematics and logic is notoriously hard. It is even hard
to formulate an appropriate verification and validation question for such LECs. There
are, however, a number of more indirect but still effective approaches to reason about
correctness of such components that we explore in FOCETA. Figure 2 provides a gen-
eral framework illustrating how a machine learning based perception component might
be developed and certified. It refines the usual development cycle, which forms three
stages - training, offline V&V (or testing), and deployment - by including a collection
of activities that support the certification of the component.

Falsification and Explanation The first approach consists of evaluating low-level prop-
erties of the LEC, such as its robustness to input perturbations, adversarial attacks and
the explanation to the perception task. This belongs to the family of design-time testing
approaches. Robustness defines how sensitive the NN is to small perturbations in the
input. There are situations where a change of a single pixel in a picture can result in
a mis-classification or mis-localization, even for state-of-the-art NNs [37,42]. As the
first step towards a complete evaluation, the general robustness of a NN can be assessed
with testing strategies, resulting in research on defining meaningful notions of cover-
age for NNs, fault-injection mechanisms for LECs and adversarial testing methods. For
example, in FOCETA, coverage-guided testing [19] and distribution-aware testing [20]
have been developed. In addition, simulated hardware faults have been found effective
in testing NN performance [34]. Within the context of continuous engineering, it is also
possible to apply refinement techniques on top of the commonly known combinatorial
testing scheme for LECs [8], in order to avoid the need of complete re-verification. For
explanation, saliency maps are usually generated to highlight the important features



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 5

Fig. 2: Continuous development of machine learning based perception component

of an input instance; we consider further the robustness of the generated explanations
[46,21].

Verification While the above methods may be effective in finding bugs in NNs, they
cannot be used to prove their correctness. This problem is typically tackled using formal
verification. For example, formal verification and optimization can be applied to find the
maximum resilience of the NN to local perturbations [26]. The challenge for verification
is its scaling to LECs of realistic size; to deal with this, research has been extended to
the verification over geometric transformations [43] rather than pixel-level changes.

Enhancement The counterexample found through either falsification, explanation, or
verification, can be utilised for enhancing the machine learning model. This can be done
through fine tuning, which slightly adjusts the weights according to the counterexam-
ples. The other mainstream, and arguably more effective, approach is through adver-
sarial training, which adapts the training algorithm to consider the properties. Towards
this, we have considered the enhancement to generalisation and robustness [23,22].

Runtime Monitoring and Reliability Assessment Most of the falsification, explanation,
and verification approaches are limited to point-wise analysis and are typically sub-
ject to the selection of testing data points. To support the deployment, it is necessary
to be able to work with any data that may appear during operation. Two methods are
considered. First, we developed runtime monitoring techniques for LECs. In general,
these techniques can be divided into white-box and black-box approaches. The former
class requires access to NN parameters. For example, neuron activation patterns or in-
terval values can be recorded over the training dataset and applied as an abstraction
for runtime monitoringe [9,18,41]. Another approach of online monitoring developed
in FOCETA uses small efficient neural networks to detect either hardware faults or in-
put abnormalities efficiently as presented and shown in [14]. The black-box approaches
build verdicts based on the NN inputs and outputs. For example, temporal consistency



6 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

of the detected objects can be modelled as a post-algorithmic abstraction and can be
applied at runtime [7]. A variant of temporal logic is used to define intended relations
in time between detected objects, e.g. forbidding the situation where a detected object
of type A suddenly becomes classified as object of type B in the next frame. Detect-
ing such temporal inconsistencies in object detection algorithms could help to prevent
accidents such as the Arizona accident with the Uber test vehicle in 2018, in which
the vehicle could not correctly and persistently identify a bicycle before an imminent
collision. Second, we employ an operational profile, which has been evolved from the
field of programming and testing, to model operational data, and then estimate the op-
erational time reliability of the component by considering both the operational model
and the verification method [44,45].

2.2 Safe Data-Driven Control

The design of data-driven controllers can benefit from several aspects used for the de-
sign of classical control applications. In particular, data-driven control naturally admits
formal specifications for expressing its intended behavior. In FOCETA, we identify
and investigate two complementary approaches for developing safe control applica-
tions that use the formal specification to formulate their functional requirements. The
first approach uses formal specifications to guide the training of the controller towards
exhibiting safe behavior [6]. The second approach builds an external mechanism, often
called a shield, to prevent an untrusted data-driven controller from doing unsafe actions.
A safety shield is an enforcer that overwrites commands from the controller whenever
executing the command could result in a safety violation. It extends the known safety
supervision approaches of Responsibility Sensitive Safety15 and Safety Force Shield16

of major automated driving provider. Safety is defined via a temporal safety specifica-
tion φ in linear temporal logic and a threshold δ ∈ [0, 1]. During runtime, the shield
overwrites any command from the controller for which the probability of violating φ
is larger than δ. A shield is automatically computed from the safety specification and
a model of the environment using value iteration. Thus, a shield guarantees that safety
is satisfied under the assumption that the underlying environmental model accurately
captures the safety relevant dynamics of the environment.

2.3 Trustworthy Updates of LECs

For a number of reasons, LECs usually have to be updated within the context of con-
tinuous engineering. For example, security concerns such as the need to withstand data
perturbations (e.g. adversarial examples) or out-of-distribution data cases, trigger the
need to replace LECs with improved ones that exhibit functionally comparable behav-
ior in certain important aspects with the ones to be replaced.

In FOCETA, in addition to the enhancement approaches discussed in Section 2.1,
this problem is addressed [12] by formally verifying the equivalence of two LECs as
follows: for two pretrained NNs of different architectures, or of the same architecture

15 https://www.mobileye.com/technology/responsibility-sensitive-safety/
16 https://www.nvidia.com/en-us/self-driving-cars/safety-force-field/



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 7

with different parameters, we check whether they yield similar outputs for the same
inputs. Contrary to strict functional equivalence that is desired for software component
design, similar outputs do not necessarily mean identical outputs in the case of NNs.
For example, two NNs used for classification may be considered equivalent if they al-
ways select the same top output class, even though the remaining output classes are
not ordered in the same way. The definition of equivalence depends on the application
and NNs at hand (e.g. classifier, regression, etc.). Therefore, we considered strict, as
well as approximate equivalences and formalized them as relations characterizing the
similarity of NN outputs, for identical inputs. Equivalence is essential for replacing one
LEC by another, but it does not ensure by itself the transfer of any other guarantees to
the updated LEC. When an improved LEC has been developed that fulfills some addi-
tional requirements or that withstands evident security threats, not previously identified,
equivalence checking is applied to the outdated and the new LEC, out of the LEAS’s
overall context.

3 Design Flow for LEAS

The design flow for LEAS consists of two parts: (1) the design-time part including
the design, implementation, and verification of the system, and (2) the run-time part,
focusing on the deployment of the LEAS and its operation in the real world.

The current state of practice is extended towards the transfer of knowledge about
systems and their contexts (e.g. traffic situations) from the development to operations
and from the operations back to development, in iterative steps of continuous improve-
ments. Over the complete life cycle of LEAS - from specification, design, implemen-
tation, and verification to the operation in the real world – the methodology enables
their continuous engineering with particular focus on the correctness with respect to an
evolving set of requirements and the systems’ safety. Moreover, the whole design flow
enables traceability between the requirements and the system/component design.

A key feature is the use of runtime monitoring for the seamless integration of de-
velopment and operations. Monitors observe a system (part) via appropriate interfaces
and evaluate predefined conditions and invariants about the LEAS behavior based on
data from these interfaces. This allows the monitor to identify needs for LEC/other
component updates during continuous engineering, if, for example, some data in a test
scenario result in a safety violation or if a new requirement will emerge during system’s
testing/operation.

3.1 Requirements and Formal Specifications

Requirements specification and semantic validation. In continuous engineering, it should
be possible to take into account additional requirements, to address needs which come
up from scenarios that have not been taken previously into account. The specification
of these additional requirements should not pose issues of consistency, ambiguity and
completeness with respect to the existing requirements. Moreover, any additional re-
quirements will have to be appropriate such that together with the existing ones will
make it possible to devise an acceptable (i.e. feasible and cost-efficient) LEAS design.



8 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

We have introduced an ontology-based approach/tool for specifying, validating and
formalizing LEAS requirements during the design phase of the continuous engineer-
ing iteration cycles [31]. Requirements are expressed in controlled natural language
restricted to terms from an ontology with precisely defined concepts and semantic rela-
tionships in the system’s domain (domain specific ontology - DSO). To tackle the lack
of a unique interpretation for the natural language syntax, we employ boilerplates, i.e.
textual templates with placeholders to be filled with ontology elements. These elements
are semantically interrelated and are part of a well-defined ontology architecture.

The whole semantic framework, together with the ontology terms mentioned in re-
quirements, enable automated semantic analyses that guide the engineer towards im-
proving the requirements specification. These analyses detect specification flaws.

However, even if the requirement specifications are semantically validated, this does
not guarantee that they are satisfied by the LEAS under design. The requirements must
be transformed into formal specifications of monitorable properties (formalisation) and
then mapped to a component-based simulation model of the LEAS. This transformation
is based on predefined mappings of boilerplates to logic-based property specifications
and it is supported by our requirements specification and formalisation tool.

Formal specification of requirements. Adapting an existing specification formalism to
LEAS is a challenging task because of the presence of LECs, such as CNN-based object
detection modules, which do not admit natural logic-based formulation of their safety
requirements (see Section 2). In FOCETA, we suggested past first-order linear temporal
logic (P-FO-LTL) [5] as the main specification formalism to reason about LEAS. It
abstracts away the internal structure of the NN-based LEC, including the internal values
of the different neurons. This simple, yet expressive formalism allows the user to (1)
quantify over (possibly unbounded number of) agents, (2) define timing constraints
between events and (3) naturally synthesize online monitors. The runtime verification
of P-FO-LTL is implemented in the DejaVu tool [17] used in the project.

We also use Signal Temporal Logic (STL) [30] as a popular specification language
among the cyber-physical systems community. The main advantage of STL is that it
naturally admits quantitative semantics and hence allows one to measure how far is the
behavior from satisfying or violating a specification. A disadvantage of STL compared
to P-FO-LTL is that it does not allow quantification over agents. The quantitative run-
time STL monitors are implemented in the RTAMT library [32]. Still it is evident that
sequential specifications based on temporal logic cannot capture every aspect during
design of LEAS. For example, many core properties of LECs, such as robustness of the
NN discussed in Section 2, do not admit natural formal specification using logic.

3.2 Simulation-based Modeling, Testing and Monitoring at Design Time

For design-time V&V of LEAS, FOCETA invests on formal modeling and simulation-
based analysis. Formal modeling is a prerequisite for specifying correctness and safety
properties and eventually verifying them. Simulation-based testing provides a cost-
effective means to verify the LEAS performance over diverse parameter ranges and
to generate massive sets of scenarios. Critical scenarios can be identified in the virtual
environment, thus limiting those needed to be replayed in the much more expensive



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 9

Fig. 3: Compositional Simulation Architecture for Digital Twins of LEAS

physical setting. Simulation-based testing also allows generating scenarios (e.g. very
rare events) that may be impossible to realize when the LEAS operates in its envi-
ronment (e.g. with specific weather conditions, such as snow). Finally, it also enables
creating safety-critical situations (e.g. crashes) without compromising the safety of the
real-life actors.

Formal modelling. For the formal modeling of LEAS, a component-based model-
ing approach is introduced that allows mixing model-based and LE components with
digital twin simulation [39]. This is achieved by having extended the BIP component
framework [4], in order to enable the design of executable models with formal seman-
tics for the LECs. In this extended BIP framework, LECs are represented by atomic BIP
components which can make machine learning inference.

Extended BIP models have been integrated into the FOCETA Compositional Simu-
lation Architecture for virtual testing (Figure 3) using Veloce System Interconnect (VSI)
[4]. VSI is used as a middleware to connect different tools and models. It enables inte-
gration of heterogeneous components and models that are designed with different tools
and allows mixing discrete modeling for the computing elements with continuous mod-
eling for the physical components. In essence, the engineer can use diverse tools/models
at different abstraction levels for modeling the sensing, control - actuation functions, the
system’s physical dynamics, and all interactions with its environment, as long as these
tools/models can be integrated via standards-based interfaces (FMI [40] or TLM).

V&V at design time is based on virtual testing. This encompasses all cases in which
one or more physical elements (software, hardware) of the LEAS are replaced by their
simulation model(s). The FOCETA Compositional Simulation Architecture supports
model-in-the-loop (MiL), software-in-the-loop (SiL) and hardware-in-the-loop (HiL)
testing of the system’s functions, at various abstraction levels. MiL testing is focused on
design correctness, the performance of LECs, the control strategies and the associated
trade-offs. Having done MiL testing, fine-tuning processes using different mechanisms
can be applied, such as requirement-encoded and safety-oriented loss function [27] for
object detection or uncertainty-aware loss function [24] for trajectory prediction tasks.

SiL testing is used to check the correctness of code in closed loop with a model of
the physical system. Finally, HiL testing consists of real-time simulations that include



10 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

Fig. 4: FOCETA requirements specification/formalization approach

the target hardware; the hardware-specific impact can be also simulated. A production-
friendly approach has been developed with the PyTorchALFI tool chain [29], which
allows to efficiently perform fault injection [16].

For verifying safety properties for the overall system model, the online formal
analysis of simulation traces is supported. Within the context of the FOCETA Com-
positional Simulation Architecture, this takes place through the integration of runtime
monitors, which are generated by the DejaVU and RTAMT monitor synthesis tools
based on formal specifications in P-FO-LTL [38] and Signal Temporal Logic (STL),
respectively. P-FO-LTL is the target language of the FOCETA requirements specifica-
tion/formalization approach that is summarized in Section 3.1 (Figure 4).

Simulation allows the designer to control the execution of scenarios and efficiently
explore the system’s operational design domain. Scenarios define the temporal evolu-
tion between several snapshots of the environment’s state in a sequence; they are spec-
ified as a set of actions and events, goals (e.g. staying between the lane markings) and
values (e.g. prioritize safety of pedestrians).

To identify safety-critical scenarios, we adopt search-based testing (SBT), in which
the testing is framed as an optimization problem that guides the search toward finding
interesting/failure-revealing test cases. Such testing can be performed by applying the
modular and extendable SBT framework OpenSBT [36] or a toolchain consisting of the
Simcenter Prescan 17 and HEEDS 18 tools. In particular, Simcenter HEEDS provides
solutions for optimization, test orchestration, and visualization and analysis, whereas
Simcenter Prescan is a physics-based simulation platform for advanced driver assis-
tance systems that has been integrated into the FOCETA Compositional Simulation Ar-
chitecture. In addition to classical SBT, we also explored black-box testing combined
with light-weight learning [13] to accelerate generation of relevant tests.

17 https://www.plm.automation.siemens.com/global/en/products/
simcenter/prescan.html

18 https://www.plm.automation.siemens.com/global/en/products/
simcenter/simcenter-heeds.html

https://www.plm.automation.siemens.com/global/en/products/simcenter/prescan.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/prescan.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/simcenter-heeds.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/simcenter-heeds.html


Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 11

3.3 Deployment, Operation and Analysis of LEAS at Runtime

The analysis of LECs and their integration into LEAS during design time, together with
the protective mechanisms synthesized around LECs support the safety assurance of
the overall system during real-time operation. These measures are complemented by
runtime verification that plays a central role during the LEAS operation. Runtime mon-
itors allow users to observe the system and its interaction with the environment and
gather useful information regarding (1) violations of safety or other requirements, (2)
new operational scenarios that were not captured by the training data and/or models,
and (3) other unexpected situations and anomalies that are not characterized by the ex-
isting set of requirements. In order to be effective, monitors must be present both at the
component level (LE and classical) and at the system level; the information gathered
by different monitors must be fused to derive useful information that can be used to
(1) ignore the situation (e.g. detected object misclassification) that does not impact the
system-level control decision, (2) take a protective measure (e.g. switch from the ad-
vanced to a base controller) or (3) improve the design (e.g. provide a new scenario for
the training data).

The last point refers to the concept of evolvable LEAS, in which information from
the system operation is collected and used to go back to the design and enhance its
functionality based on new insights, thus effectively closing a loop between the design
and the operation phase. To enable evolvable LEAS, two questions need to be answered:
(1) how to extract and summarize information from raw observations, and (2) how to
use such information to increase the quality of the design.

In FOCETA, we advocate specification mining [2] as one approach to answer the
first question. It is the process of learning system properties from observing its exe-
cution and the behavior of its environment. We use inferred specifications to under-
stand the specificities of the system behavior, characterize its operational design domain
(ODD) and identify system aspects that can be improved. However, specification min-
ing has broader application potentials. Specifications mined from a system can be also
used to complete the existing incomplete or outdated specifications, confirm expected
behaviors, and generate new tests. Answering the second question is highly dependent
on the specific component or sub-system that needs to be updated and improved over
time. For example, we developed a proof-on-demand mechanism [28] to expand the
region in which a data-driven controller can safely function without the need to activate
the shield while the system is operating

3.4 Assurance Cases for LEAS

The continuous engineering of safety-critical LEAS requires constructing and main-
taining an assurance case. In FOCETA, we adopted the off-the-shelf continuous inte-
gration framework Evidential Tool Bus (ETB) [10]. ETB allows: 1) the automated and
decentralized execution of V&V tools to provide assurance evidence for an assurance
case construction, and 2) incrementally maintain an assurance case. An incremental up-
date is required when, for instance, the system under assurance changes, e.g., when the
requirements of the system (e.g., its ODD) must be updated either after inference of
corner case properties at runtime with specification mining or when the system must be
deployed in another country with different regulations.



12 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

4 Case Studies Demonstrating the FOCETA Methodology

4.1 Traffic speed detection and Path Lane Following

Figure 5 depicts a SiL setup that shows how digital twin simulation is extended with
formal analysis and runtime monitoring to verify the functionality of a traffic speed
detection and path lane following system. In this case study, a formal model was devel-
oped for the perception and throttle/brake control modules of the LEAS using the BIP
component framework. This executable model was then integrated with a Simcenter
Prescan model for the environment, a Simcenter Amesim model for the EGO vehicle
dynamics and a ROS-based implementation of the steering control for path lane follow-
ing and twist control. The vehicle has an RGB camera sensor. The camera feed is sent to
the BIP model for speed sign detection and classification, and the controller component
takes the action of acceleration/deceleration based on the speed sign detected. Formal
specifications derived from the system requirements using the FOCETA requirements
formalisation tool (cf. Figure 4) are then used for synthesizing DeJaVu runtime mon-
itors for safety property checking. DeJaVu monitors are then seamlessly integrated,

Fig. 5: ML-based traffic speed detection and Path Lane Following



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 13

Fig. 6: A trace of the SiL example co-simulated for a horizon of 4001 time units, output:
speed over time. The violating events of property/rule 2 are shown in red.

together with the aforementioned components/models, into the compositional digital
twin shown in Figure 5 based on the VSI.

The upper part of Figure 6 shows how the classification of the YOLO model used
for traffic sign detection is affected via imperfections of varying coverage due to various
weather conditions. The tests took place by implementing different scenarios through
changing the types of imperfection in Prescan. Our YOLO model appears to be i) robust
against low-coverage imperfections, and ii) sensitive against high-coverage scratch and
snow. On the right, an incorrect prediction found is displayed, via a bounding box. In
the table below, we provide the verification results over the simulation trace of a sample
scenario with respect to the following properties:
P1: “EGO should always identify the traffic sign value correctly and the vehicle’s speed
should be always smaller or equal to the current speed limit.”
P2:“If EGO detects a new speed limit, the speed should not exceed this speed limit by
more than ϵ for T time units after detection, where ϵ is a given percentage.”.



14 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

Fig. 7: Digital twin simulation with runtime monitoring the behaviour of a LEC

For simulation traces extended up to 4001 time units we found that property violations
occur: (i) when a new traffic sign appears that changes the speed limit from a higher
to a lower value, and (ii) due to oscillations of the vehicle speed, when reaching a new
speed limit.

The results in Figure 6 are for LEAS that do not account for potential failures of the
YOLO model to correctly identify the speed limit. In this case, the combined interac-
tion of the throttle/brake control and steering control modules will have to ensure that
when an abrupt steering angle change is commanded, the vehicle’s speed is less than
a safe margin (constant ζ) relative to the speed limit. Figure 7 showcases the interac-
tions between runtime monitors at two different levels. At a local level for monitoring
the performance of the YOLO model, we employ a runtime monitoring technique from
those discussed in Section 2.1. At the system level, we use a DeJaVu global monitor for
verifying the following property:
P3:“The traffic sign should be correctly detected (local monitor) and EGO’s speed
should be smaller than vdet (speed limit) if the difference δst between current and pre-
vious steering angle is less than εdeg 1 degrees, and vsim should be smaller than vdet by
at least ζ if δst is greater than εdeg 2”.

4.2 Safe and Secure Intelligent Automated Valet Parking

This case study addresses an automated valet parking (AVP) system, a highly auto-
mated driving system in a relatively controlled environment, or technically termed op-
erational design domain (ODD) [35]. Still, in this ODD, there may be mixed traffic that
involves pedestrians as well as parked and moving vehicles. In addition, environmental
attributes such as illumination, precipitation, and fog conditions may change. For exam-
ple, Figure 8 shows a functional scenario of pedestrian avoidance in a parking lot and
the diversity of the ODD considered in this case study. As seen, even within a relatively
controlled parking space, there can be many challenging factors, among them (i) the



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 15

Fig. 8: (Top) An example pedestrian-avoiding scenario in the AVP use case. The left im-
age shows a bird’s eye view with the drop-off zone in yellow and the designated parking
slot in red. The right image shows a driving view, highlighting a pair of pedestrians at
risk. (Bottom) The effect of various environmental attributes including illumination and
precipitation conditions.

high variability of scenarios, (ii) the intricate actor dynamics, and (iii) the constantly
changing world (e.g., unknown objects) are the most pressing.

To tackle such challenges and ultimately deliver a trustworthy AVP system, we fol-
low the FOCETA holistic approach and apply multiple techniques presented in the pre-
vious sections. Figure 9 gives the overall use case architecture encompassing the base-
line system and the applied techniques, which can be grouped into four phases in a
continuous engineering process, namely baseline construction with requirement vali-
dation, design-time testing and fine-tuning, run-time monitoring and enforcement, and
lastly incremental assurance and argumentation. In the following, we instantiate every
phase of this workflow with concrete methods and tools and illustrate their application.

(A) Baseline construction with requirement validation. For constructing an AVP
baseline system, we consider a component-based design with sensing, planning, and
acting components, as shown by the green area in Figure 9. In particular, we implement
two LECs, including an NN-based 3D object detector and an RL-based controller. We
also focus on virtual testing in the Simcenter Prescan simulator19. Overall, this design
offers two benefits: (i) The assurance of the overall AVP system can now be attributed
to more tractable and efficient verification efforts at the component level; (ii) Adopting
the continuous engineering paradigm, we only need to refine and reverify components,
typically the learning-enabled ones, that call for an incremental update at some point
during testing or run-time.

To illustrate the benefits, we specify a high-level safety goal: The automated vehi-
cle (AV) does not cause a collision unless it is hit by other actors in a static state. With
the component-based design, the safety goal can be decomposed into low-level require-
ments. For instance, the learning-enabled controller is required to always follow a given
path within a maximum deviation. Similarly, the (rule-based) emergency brake has to

19 The virtual simulation platform can be seamlessly changed for HiL or ViL testing.



16 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

Fig. 9: The overall AVP use case architecture encompassing the testing platform and the
V&V and testing techniques discussed in previous sections. The red tags mark the four
phases in our continuous engineering process, including (A) baseline construction with
requirement validation, (B) design-time testing and fine-tuning, (C) run-time monitor-
ing and enforcement, and (D) incremental assurance and argumentation.

stop the AV whenever there is an obstacle situated within a safety distance (e.g., the
pedestrians in Figure 8). Intuitively, this safety distance can be derived from the max-
imum controller deviation and the maximum braking distance. Finally, the learning-
enabled object detector must then always recognize an obstacle (e.g., the pedestrians)
within the derived safety distance. We formally specify these requirements to facilitate
rigorous V&V, testing, and monitoring of the AVP components/system. These require-
ments are managed and validated using semantic analysis based on the DSO modeled
from the AVP system (see Section 3.1). More specifically, the analysis helps to iden-
tify potential weaknesses (e.g., incompleteness, inconsistency, and redundancy) in the
requirements.

(B) Design-time testing and fine-tuning. During design time, testing is done at two
levels. At the lower level, we focus on testing the two LECs. Due to the space limit, we
provide here brief explanations and links to their results. As mentioned in Section 2,
we propose three complementary assessment approaches for the 3D object detector: (1)
reliability assessment, (2) safety verification, and (3) fault-based testing. The statistical
reliability assessment study takes into account the operational profile (i.e., the described
ODD) and local robustness of the object detector [44]. The safety verification for the
object detector follows an intuitive requirement demanding the predictions properly
enclose the ground truths, such that there is an explicit metric and mitigating mecha-
nism for a lower risk of collision. The requirement is formalized using predicate logic
with spatial operators on bounding boxes and applied to evaluate the object detector’s
safety performance. Additionally, the safety performance can be fine-tuned via a safety-
oriented loss function [27]. Lastly, the fault injector simulates hardware faults (e.g. bit



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 17

Fig. 10: Critical test cases generated for the AVP system in the pedestrian-avoiding
scenario, including a rainy and foggy case (left) and a rainy and dark case (right).

flips in NN weights) that allow analyzing their impact on the correctness of the object
detector. Likewise, an additional fault mitigating mechanism based on neuron activation
interval analysis is developed to safeguard the working of the object detector [15]. As
for the learning-enabled controller, we apply RL guiding techniques as described in [1]
to ensure its performance and safety.

With the components tested and integrated, system-level testing is then conducted
(see Section 3.2). In particular, given the ODD, we employ search-based testing (SBT)
with evolutionary algorithms for our AVP system [36]. Specifically, the following steps
are taken: (1) Select a scenario within the ODD, e.g., the pedestrian-avoiding scenario
in Figure 8; (2) Define the variables and specify their ranges in which they will be
varied to generate different instances of the scenario such as time of day (e.g., 9:00-
17:00), precipitation (e.g., none, medium, or heavy rain), and different pedestrian types
(e.g., child, adult, and elder); (3) Define fitness functions based on the introduced safety
goal, e.g., the distance between the AV and the pedestrian and the velocity of the AV
at its closest point to the pedestrian; (4) Apply a search algorithm and optimize the
fitness functions to find failure-revealing test cases. Figure 10 shows two such critical
cases qualitatively, and quantitatively we observe about 30% of generated test cases
are critical to the AVP system using NSGA-II [11]. By doing such optimization-driven
search-based testing, we are able to extensively test the AVP system and mitigate the
challenge of high scenario variability.

(C) Run-time monitoring and enforcement. Considering the challenges of intricate
actor dynamics and the ever-changing world, an AVP system can hardly be fully assured
by design-time testing only. Therefore, monitors and enforcers are usually added to the
system to safeguard it during run-time. We highlight two lines of work in this regard.
Firstly, we create an out-of-distribution perception monitor (see Section 2.1) and link it
to a system safety enforcer. Essentially, the perception monitor provides the confidence
level of the object detector’s prediction and triggers the system safety shield (see Sec-
tion 2.2) to correct the underlying controller’s action whenever needed [25]. Figure 11
demonstrates an interim result of applying the safety shield (with ground-truth percep-
tion). Secondly, a global state monitor modeled (see Section 3.2) with Signal Temporal
Logic (STL) is implemented via RTAMT [32] to ensure the overall safety of the AVP
system. For example, when the perception monitor sends a warning, the state monitor
can check if the shield is actually activated. Additionally, it can also directly monitor
different vehicle states such as tracking deviation, as decomposed from the high-level



18 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

Fig. 11: In the pedestrian-avoiding scenario, the shield (left) mitigates the risk of collid-
ing more smoothly and earlier than the baseline emergency brake (right).

safety goal. Altogether, as depicted by the light blue area in Figure 9, these techniques
form another layer of safety measures at run-time for the AVP system.
(D) Incremental assurance and argumentation. Finally, to close the loop of the con-
tinuous engineering process, we underline the utilization of the specification mining
technique (Section 3.3) [3] which helps characterize system behaviors or identify miss-
ing requirements with system operations. For instance, by repeating the simulation of
the pedestrian-avoiding scenario in Figure 8, we find that the AV (1) will never go
within 0.5 meters to the first pedestrian and (2) will only make a collision if the sec-
ond pedestrian is a child (but not an adult or an elder). With these results, we can then
refine or relax the original set of requirements (from phase A) and thereby repair or
fine-tune our AVP system for incremental assurance (Section 3.4). Another iteration
cycle of requirements validation will then have to take place (cf. Figure 4).

4.3 Anaesthetic Drug Target Control Infusion

This case study develops a concept design and a test platform, depicted in Figure 12, for
an intelligent infusion pump controller for Depth of Anaesthesia (DoA). The main aim
for a smart infusion controller is to provide support to the anesthesiologist in monitoring
the DoA of a patient undergoing surgical intervention in operating room and calculating
the next drug infusion dose. The anesthesiologist must take right decisions in possibly
stressful environments, which might even include working on more than one patient at
the same time. This type of assistance is crucial to ensure that the anesthesiologist can
always take the optimal decision and timely react to unforeseen situations.

The main intelligence is embedded in the controller. We developed a data-driven
controller based on a recurrent NN for the pump infusion from the collected data used
for training. While the data-driven controller may provide near to optimal drug infusion
doses, this process is not expected to be fully automated, both from the perspective of
regulatory bodies and the user acceptance. Hence, we take the approach of having the
human shield (anesthesiologist) that ensures the safety of the patient by taking the final
decision regarding the next dose. Another LEC in design is the monitor that observes
the vital signs of the patient and predicts her current DoA state.



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 19

Fig. 12: HiL/SiL platform for the medical case study.

Fig. 13: Simulation results: BIS vs. infusion rate for a given patient Profile TestCase

To support the design of this intelligent drug pump controller, we need several other
components and a virtual integration and testing platform. Given that no clinical studies
can be done in FOCETA, there is a need for replacing the real patient in the platform.
Hence, we developed a patient model in Simcenter Amesim. The model, based on the
relevant research in the medical literature, is parameterizable in function of the patient’s
characteristics, such as the age, weight and gender. The patient is modelled using tradi-
tional compartmental analysis in which the interpersonal variability is considered. The
patient´s model determines the DoA level achieved with a certain drug dose in bispec-
tral index (BIS) values.

Another key component in this platform is the test case manager. It is used for
the initial configuration of the other components according to the selected test case.
The main initial settings are the initial drug infusion dose and the target DoA level.
The abstract test scenarios are (partially) constructed from interviewing doctors and
recording their usual sequences of steps during operations.



20 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

We used the FOCETA Compositional Simulation Architecture (cf. Figure 3) to in-
tergrate Simcenter Amesim, DejaVU (Runtime Monitoring), BIP (Component based
Modeling), Virtual Platform Modeling, and HiL (external Hardware board), as shown
in Figures 12 and 13. Furthermore, we demonstrate the refinement of the DoA controller
under test while keeping all other digital twin components intact within the loop (i.e.
Testbench platform). The success criterion in this case was to obtain the same results,
which affirms the effectiveness of the controller design refinement.

5 Conclusion

In this paper, we presented the FOCETA methodology that consists of two workflows:
one for designing trustworthy LECs and one for building safe LEAS by integrating both
classical and LE components. We summarized the main steps of the methodology and
associated them to the most appropriate methods and tools developed in FOCETA. We
finally showed how the case studies in FOCETA demonstrate the various facets of the
methodology.

References

1. Edgar A. Aguilar, Luigi Berducci, Axel Brunnbauer, Radu Grosu, and Dejan Nickovic. From
STL rulebooks to rewards. CoRR, abs/2110.02792, 2021.

2. Ezio Bartocci, Cristinel Mateis, Eleonora Nesterini, and Dejan Nickovic. Survey on mining
signal temporal logic specifications. Information and Computation, page 104957, 2022.

3. Ezio Bartocci, Cristinel Mateis, Eleonora Nesterini, and Dejan Ničković. Mining hyperprop-
erties using temporal logics. ACM Trans. Embed. Comput. Syst., 2023.

4. Ananda Basu, Saddek Bensalem, Marius Bozga, Paraskevas Bourgos, and Joseph Sifakis.
Rigorous system design: the BIP approach. In International doctoral workshop on mathe-
matical and engineering methods in computer science, pages 1–19. Springer, 2011.

5. Saddek Bensalem, Chih-Hong Cheng, Xiaowei Huang, Panagiotis Katsaros, Adam Molin,
Dejan Nickovic, and Doron Peled. Formal specification for learning-enabled autonomous
systems. In Software Verification and Formal Methods for ML-Enabled Autonomous Sys-
tems, pages 131–143, Cham, 2022. Springer International Publishing.

6. Luigi Berducci, Edgar A. Aguilar, Dejan Ničković, and Radu Grosu. Hierarchical potential-
based reward shaping from task specifications. arXiv, 2021.

7. Yuhang Chen, Chih-Hong Cheng, Jun Yan, and Rongjie Yan. Monitoring object detection ab-
normalities via data-label and post-algorithm abstractions. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6688–6693, 2021.

8. C. Cheng and R. Yan. Testing autonomous systems with believed equivalence refinement.
In 2021 IEEE International Conference On Artificial Intelligence Testing (AITest), pages
49–56. IEEE Computer Society, 2021.

9. Chih-Hong Cheng. Provably-robust runtime monitoring of neuron activation patterns. In
IEEE DATE, 2021.

10. Simon Cruanes, Grégoire Hamon, Sam Owre, and Natarajan Shankar. Tool integration with
the evidential tool bus. In Verification, Model Checking, and Abstract Interpretation, 14th
International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings,
pages 275–294, 2013.



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 21

11. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

12. Charis Eleftheriadis, Nikolaos Kekatos, Panagiotis Katsaros, and Stavros Tripakis. On neural
network equivalence checking using smt solvers. In Sergiy Bogomolov and David Parker,
editors, Formal Modeling and Analysis of Timed Systems, pages 237–257, Cham, 2022.
Springer International Publishing.

13. Roi Fogler, Itay Cohen, and Doron Peled. Accelerating black box testing with light-weight
learning. In Model Checking Software - 29th International Symposium, SPIN 2023, Paris,
France, April 26-27, 2023, Proceedings, pages 103–120, 2023.

14. Florian Geissler, Syed Qutub, Michael Paulitsch, and Karthik Pattabiraman. A low-cost
strategic monitoring approach for scalable and interpretable error detection in deep neural
networks. In Computer Safety, Reliability, and Security - 42nd International Conference,
SAFECOMP 2023, Toulouse, France, September 19-22, 2023, Proceedings, 2023.

15. Florian Geissler, Syed Qutub, Sayanta Roychowdhury, Ali Asgari, Yang Peng, Akash
Dhamasia, Ralf Graefe, Karthik Pattabiraman, and Michael Paulitsch. Towards a safety
case for hardware fault tolerance in convolutional neural networks using activation range
supervision. CoRR, abs/2108.07019, 2021.

16. Ralf Gräfe, Qutub Syed Sha, Florian Geissler, and Michael Paulitsch. Large-scale applica-
tion of fault injection into pytorch models -an extension to pytorchfi for validation efficiency.
In 2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works - Supplemental Volume (DSN-S), pages 56–62, 2023.

17. Klaus Havelund, Doron Peled, and Dogan Ulus. Dejavu: A monitoring tool for first-order
temporal logic. In 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems,
MT@CPSWeek 2018, Porto, Portugal, April 10, 2018, pages 12–13, 2018.

18. Thomas A Henzinger, Anna Lukina, and Christian Schilling. Outside the box: Abstraction-
based monitoring of neural networks. In ECAI 2020, pages 2433–2440. IOS Press, 2020.

19. Wei Huang, Youcheng Sun, Xingyu Zhao, James Sharp, Wenjie Ruan, Jie Meng, and Xi-
aowei Huang. Coverage-guided testing for recurrent neural networks. IEEE Transactions on
Reliability, 71(3):1191–1206, 2022.

20. Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang. Hierarchical
distribution-aware testing of deep learning, 2022.

21. Wei Huang, Xingyu Zhao, Gaojie Jin, and Xiaowei Huang. Safari: Versatile and efficient
evaluations for robustness of interpretability. arXiv preprint arXiv:2208.09418, 2022.

22. Gaojie Jin, Xinping Yi, Wei Huang, Sven Schewe, and Xiaowei Huang. Enhancing adver-
sarial training with second-order statistics of weights. In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 15273–15283, June 2022.

23. Gaojie Jin, Xinping Yi, Liang Zhang, Lijun Zhang, Sven Schewe, and Xiaowei Huang. How
does weight correlation affect generalisation ability of deep neural networks? In Advances
in Neural Information Processing Systems, volume 33, pages 21346–21356, 2020.

24. Neslihan Kose, Ranganath Krishnan, Akash Dhamasia, Omesh Tickoo, and Michael
Paulitsch. Reliable multimodal trajectory prediction via error aligned uncertainty optimiza-
tion. In Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part V, pages 443–458, 2022.

25. Bettina Könighofer, Julian Rudolf, Alexander Palmisano, Martin Tappler, and Roderick
Bloem. Online shielding for reinforcement learning. CoRR, abs/2212.01861, 2022.

26. Brian Hsuan-Cheng Liao, Chih-Hong Cheng, Hasan Esen, and Alois Knoll. Are transformers
more robust? Towards exact robustness verification for transformers. In SafeComp, 2023.

27. Brian Hsuan-Cheng Liao, Chih-Hong Cheng, Hasan Esen, and Alois Knoll. Improving the
safety of 3D object detectors in autonomous driving using IoGT and distance measures.
abs/2209.10368, 2023.



22 S. Bensalem, P. Katsaros, D. Ničković, B. H.-C. Liao et al.

28. Benedikt Maderbacher, Stefan Schupp, Ezio Bartocci, Roderick Bloem, Dejan Nickovic, and
Bettina Könighofer. Provable correct and adaptive simplex architecture for bounded-liveness
properties. In Model Checking Software - 29th International Symposium, SPIN 2023, Paris,
France, April 26-27, 2023, Proceedings, pages 141–160, 2023.

29. Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez Vicarte,
Sarita V. Adve, Christopher W. Fletcher, Iuri Frosio, and Siva Kumar Sastry Hari. Pytorchfi:
A runtime perturbation tool for dnns. In 2020 50th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshops (DSN-W), pages 25–31, 2020.

30. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.
In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages
152–166, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

31. Konstantinos Mokos, Theodoros Nestoridis, Panagiotis Katsaros, and Nick Bassiliades. Se-
mantic modeling and analysis of natural language system requirements. IEEE Access,
10:84094–84119, 2022.

32. Dejan Nickovic and Tomoya Yamaguchi. RTAMT: online robustness monitors from STL. In
Automated Technology for Verification and Analysis - 18th International Symposium, ATVA
2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings, pages 564–571, 2020.

33. OpenAI. Gpt-4 technical report, 2023.
34. Syed Qutub, Florian Geissler, Yang Peng, Ralf Gräfe, Michael Paulitsch, Gereon Hinz, and

Alois Knoll. Hardware faults that matter: Understanding and estimating the safety impact
of hardware faults on object detection DNNs. In Lecture Notes in Computer Science, pages
298–318. Springer International Publishing, 2022.

35. SAE. J3016: Taxonomy and definitions for terms related to driving automation systems for
on-road motor vehicles.

36. Lev Sorokin, Tiziano Munaro, Damir Safin, Brian Hsuan-Cheng Liao, and Adam Molin.
Opensbt: A modular framework for search-based testing of automated driving systems, 2023.

37. Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling
deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, oct
2019.

38. Anastasios Temperekidis, Nikolaos Kekatos, and Panagiotis Katsaros. Runtime verification
for fmi-based co-simulation. In Thao Dang and Volker Stolz, editors, Runtime Verification,
pages 304–313, Cham, 2022. Springer International Publishing.

39. Anastasios Temperekidis, Nikolaos Kekatos, Panagiotis Katsaros, Weicheng He, Saddek
Bensalem, Hisham AbdElSabour, Mohamed AbdElSalam, and Ashraf Salem. Towards a
digital twin architecture with formal analysis capabilities for learning-enabled autonomous
systems. In Modelling and Simulation for Autonomous Systems, pages 163–181, Cham,
2023. Springer International Publishing.

40. Stavros Tripakis. Bridging the semantic gap between heterogeneous modeling formalisms
and FMI. In 2015 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 60–69. IEEE, 2015.

41. Changshun Wu, Yliès Falcone, and Saddek Bensalem. Customizable reference runtime mon-
itoring of neural networks using resolution boxes, 2021.

42. Zuxuan Wu, Ser-Nam Lim, Larry Davis, and Tom Goldstein. Making an invisibility cloak:
Real world adversarial attacks on object detectors, 2019.

43. Peipei Xu, Fu Wang, Wenjie Ruan, Chi Zhang, and Xiaowei Huang. Sora: Scalable black-
box reachability analyser on neural networks. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

44. Xingyu Zhao, Wei Huang, Alec Banks, Victoria Cox, David Flynn, Sven Schewe, and Xi-
aowei Huang. Assessing the reliability of deep learning classifiers through robustness evalu-
ation and operational profiles. In Proc. of the Workshop on Artificial Intelligence Safety 2021
(co-located with IJCAI 2021), volume 2916 of CEUR Workshop Proceedings, 2021.



Continuous Engineering for Trustworthy Learning-enabled Autonomous Systems 23

45. Xingyu Zhao, Wei Huang, Vibhav Bharti, Yi Dong, Victoria Cox, Alec Banks, Sen Wang,
Sven Schewe, and Xiaowei Huang. Reliability assessment and safety arguments for machine
learning components in assuring learning-enabled autonomous systems. ACM Transactions
on Embedded Computing Systems, 2022.

46. Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu, and David Flynn. Baylime:
Bayesian local interpretable model-agnostic explanations. In Proc. of 37th Conference on
Uncertainty in Artificial Intelligence, volume 161, pages 887–896. PMLR, 27–30 Jul 2021.


