
What, Indeed, is an Achievable Provable Guarantee for
Learning-Enabled Safety-Critical Systems

Saddek Bensalem1, Chih-Hong Cheng2, Wei Huang3, Xiaowei Huang4,
Changshun Wu1, and Xingyu Zhao5

1 University Grenoble Alpes, VERIMAG, Grenoble, France
{saddek.bensalem,changshun.wu}@univ-grenoble-alpes.fr

2 Technical University of Munich, Garching, Germany
chih-hong.cheng@tum.de

3 Purple Mountain Laboratories, Nanjing, China
huangwei@pmlabs.com.cn

4 Department of Computer Science, University of Liverpool, Liverpool, UK
xiaowei.huang@liverpool.ac.uk

5 WMG, University of Warwick, Coventry, UK
xingyu.zhao@warwick.ac.uk

Abstract. Machine learning has made remarkable advancements, but confidently
utilising learning-enabled components in safety-critical domains still poses chal-
lenges. Among the challenges, it is known that a rigorous, yet practical, way of
achieving safety guarantees is one of the most prominent. In this paper, we first
discuss the engineering and research challenges associated with the design and
verification of such systems. Then, based on the observation that existing works
cannot actually achieve provable guarantees, we promote a two-step verification
method for the ultimate achievement of provable statistical guarantees.
Keywords: Safety-critical systems · learning-enabled components · statistical guar-
antees.

1 Introduction

From the studies of Leibniz [1] to the philosophical view, the human mind and brain
have been perceived as an information processing system and thinking as a form of
computing. Over three centuries ago, two dreams were mingled, the philosopher’s and
the engineer’s: the philosopher’s ideal to have a sound method to reason correctly, and
the engineer’s dream to have a machine to calculate efficiently and without error. Any at-
tempt to assimilate the human brain into a mechanical or computer machine necessarily
negates the autonomy of thought. The latter is not the result of chance or indeterminacy
but instead of a possibility of choice according to the reasoning based on rules and princi-
ples. By its organization, the human brain allows the emergence of cognitive autonomy.
Of course, suppose we accept the idea of a level of existence proper to the cognitive
processes. In that case, the philosophical dream becomes, more modestly, that of un-
derstanding the diversity of human cognitive functions. The development of the general
theory of automata and the formalization of the construction of complex machines by

2 S. Bensalem et al.

Von Neumann allowed the pursuit of the engineer’s dream. A central turning point took
place around the 1960s, with the design of machines on the one hand and progress in
artificial intelligence (AI) and cognitive science on the other hand. Significant successes
have been achieved, for example, in natural language processing.

Our world today is witnessing the genesis of a significant shift in how advanced tech-
nologies operate. We are beginning to see increasingly independent and autonomous
systems in this emerging wave of available automation. The degree of interactions be-
tween these systems and human operators is gradually being reduced and pushed fur-
ther away. These autonomous systems are inherently sophisticated and operate in com-
plex, unpredictable environments. Unfortunately, they still face deployment concerns in
safety-critical applications (e.g., transportation, healthcare, etc.) due to a lack of trust,
behavioural uncertainty, and technology compatibility with safe and secure system de-
velopment methods. In particular, Urban Autonomous Driving and Intelligent Medical
Devices are considered to be the most complex problem in autonomy; existing devel-
opment of autonomous vehicles naturally includes the AI part (e.g., machine-learning
for perception), as well as the CPS part (e.g., for vehicle control or decision making via
infrastructure support). However, there are significant challenges in ensuring the quality
of the overall system.

To ensure the safety of autonomous systems that incorporate AI components, we
consider it mandatory for the overall engineering process to understand the safety per-
formance of AI components while considering their impact on the overall system. Guar-
anteeing safety in critical systems that incorporate AI components, however, is not a
straightforward process. Several constituent elements of safety cover all the dimensions
of an AI system. The criteria catalog we can find in the literature to improve safety in
critical applications can be summarized as the following:

– All algorithms based on decision-making shall be explainable [2, 3, 4, 5];
– The functionality of algorithms shall be analyzed and validated using formal veri-

fication methods before use [6, 7, 8, 9, 10];
– Statistical validation is necessary, mainly in cases where formal verification is un-

suitable for specific application scenarios due to scalability issues [11, 12];
– The inherent uncertainty of neural network decisions shall also be quantified [13,

14, 15, 16];
– Systems must be observed during operation, for example, by using online monitor-

ing processes [17, 18, 19, 20, 21].
In this paper, we promote an approach founded on a two-step integration. The first step
involves a system-level analysis and testing, rather than solely focusing on the AI com-
ponent in isolation. It recognizes the interconnected nature of the system and considers
the integration and interactions of various components. By examining the system as a
whole, potential risks and vulnerabilities can be identified, allowing for comprehensive
safety assurance. The second step involves a detailed analysis of the AI components
themselves, without considering their impact on the overall system. While this step pro-
vides insights into the specific AI algorithms and models, in itself it may overlook poten-
tial risks arising from the interactions between the components and the broader system
context. This two-step integration of verification processes is to assess the safety perfor-
mance of AI components while also considering their impact on the overall system. This

Title Suppressed Due to Excessive Length 3

entails examining not only their individual performance but also their interactions within
the broader system context. In addition to formal analysis, we can also conduct studies
on statistical guarantees and how these guarantees propagate throughout the system.

The rest of the paper is organized as follows. Sections 2 and 3 discuss the chal-
lenges of designing reliable and trustworthy AI critical systems from an engineering
and research perspective, respectively. In Section 4, we present our methodology and
proposed solutions to tackle these challenges. Finally, Section 5 provides a summary of
the conclusions and highlights avenues for future work.

2 Challenges in Engineering Safety-critical Systems integrating
Learning-enabled Components

The engineering of safety-critical systems has been a mature paradigm with the support
of safety standards such as IEC 61508, ISO 26262, or DO-178c. The rigorous method
implied by the process focuses on hazards caused by the malfunctioning behavior of E/E
safety-related systems, including the interaction of these systems. Nevertheless, even in
the absence of system malfunctioning, functional insufficiencies caused by performance
limitations and incomplete/improper specification can also be the source of hazards,
where standards such as ISO 21448 are introduced to address these issues.

To ensure the necessary level of safety and reliability, a learning-enabled compo-
nent must also meet the identical functional safety standards encompassing reliability,
applicability, maintenance, and safety (RAMS) as any other system. Moreover, it should
mitigate the impacts of malfunctions to fulfill the essential safety and reliability prereq-
uisites. On the other hand, properly ensuring the safety of the intended functionality
(SOTIF) is the crucial gap in embracing the legitimate use of learning-enabled compo-
nents. In the following, we enumerate some of the key limiting factors.
1. The introduction of learning-enabled components comes with the practical moti-

vation where the operational environment is open and dynamic (e.g., urban au-
tonomous driving), thereby inherently making rigorous analysis complicated [22,
23, 10].

2. Data has played a central role in learning-enabled systems [24, 25, 26]. Under the
slogan “data is the new specification”, it is crucial to have a systematic approach
to performing data collection, cleaning, labeling, as well as managing the data to
incorporate adjustment of the operational domain.

3. Learning implies translating the implicit knowledge embedded in the data to a model.
Despite the mathematical optimization nature of learning model parameters being
transparent, the uncertainty [13, 14, 15, 16] caused by the model training or the
data can lead to fundamental concerns about the validity of the prediction.

4. Classical techniques for software verification encounter scalability issues [10, 21].
Learning models such as deep neural networks create highly non-linear functions to
perform classification and prediction tasks. Formal verification or bug finding thus
can be viewed as a non-linear optimization problem across the high dimensional
input space. The problem even worsens when the learned model controls a plant
governed by highly nonlinear dynamics.

4 S. Bensalem et al.

5. The derivation of safety specifications for the learning component can be far from
trivial [10, 27]. While for tasks such as image-based object detection, the perfor-
mance specification characterizing the error rate is relatively straightforward (which
commonly leads to a probabilistic threshold on error rate), for control applications,
the safety and performance requirement needs to be translated into reward signals
in order to be used by (reinforcement) learning methods.

6. Finally, the above challenges are further complicated by the fact that the engineer-
ing of learning-enabled components is iterative with the goal of continuous im-
provement [10, 13, 14, 15, 16]. It is also complicated by the dimension of avoiding
malfunctioning, implying the need to design hardware or software architectures to
avoid transient or permanent faults in the learning-enabled components.
Unfortunately, the state-of-the-art guidelines or standards only provide high-level

principles, while concrete methods for safe and cost-effective implementation are left
for interpretation. This ultimately brings the research need in the field, which we detail
in subsequent sections.

3 Research Challenges

The reason why one wants to apply machine learning to a safety critical application is
two-fold: (1) it is impossible to program a certain functionality of the application and (2)
a machine learning model can not only perform well on existing data but also generalise
well to unseen data. Nevertheless, it is required that a machine learning model has to be
safe and well performed such that both safety and performance can be quantified with
error bounds given. Safety will be prioritised when a balance is needed.
Remark 1. While non-trivial, it is possible that a software or hardware system can be
designed and implemented with ultra-high reliability, thanks to the availability of spec-
ification and requirements. However, this is unlikely for machine learning models, due
to the unavailability of specifications and the complexity of the learning process. This
calls for novel design and implementation methodologies for machine learning systems
to satisfy both safety and performance requirements.

For the remaining of this section, we discuss challenges a novel methodology needs
to tackle. While every gap between traditional software and AI-based systems, as dis-
cussed in Section 2, leads to research challenges, we believe the most significant ones
are from (1) the environmental uncertainties that an AI-based system has to face, (2)
the size and complexity of the AI models themselves, and (3) the lack of novel analy-
sis methods that are both rigorous and efficient in dealing with the new problems. These
three challenges lead to our proposal of considering statistical guarantees and symbolic
analysis of AI models.

3.1 Uncertainty

In machine learning, uncertainty is often decomposed into aleatoric uncertainty and
epistemic uncertainty, with the former irreducible and the latter reducible in theory. To

Title Suppressed Due to Excessive Length 5

explain this, we formalise the concept of generalisability, which requires that a neural
network works well on all possible inputs in the data domain 𝚇, although it is only trained
on the training dataset (𝑋, 𝑌).
Definition 1. Assume that there is a ground truth function 𝑓 ∶ 𝚇 → 𝚈 and a probability
function 𝑂𝑝 ∶ 𝚇 → [0, 1] representing the operational profile. A network trained on
(𝑋, 𝑌) has a generalisation error:

𝐺0−1
 =

∑

𝑥∈𝚇
𝟏{ (𝑥)≠𝑓 (𝑥)} × 𝑂𝑝(𝑥) (1)

where 𝟏𝚂 is an indicator function – it is equal to 1 when S is true and 0 otherwise.

We use the notation 𝑂𝑝(𝑥) to represent the probability of an input 𝑥 being selected,
which aligns with the operational profile notion [28] in software engineering. Moreover,
we use 0-1 loss function (i.e., assigns value 0 to loss for a correct classification and 1 for
an incorrect classification) so that, for a given 𝑂𝑝, 𝐺0−1

 is equivalent to the reliability
measure pfd (the expected probability of the system failing on a random demand) defined
in the safety standard IEC-61508.

We decompose the generalisation error into three:
𝐺0−1
 = 𝐺0−1

 − inf
∈𝙽

𝐺0−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Estimation error of

+ inf
∈𝙽

𝐺0−1
 − 𝐺0−1,∗

𝑓,(𝑋,𝑌)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Approximation error of 𝙽

+𝐺0−1,∗
𝑓,(𝑋,𝑌)

⏟⏞⏟⏞⏟
Bayes error

(2)

a) The Estimation error of measures how far the learned classifier is from the
best classifier in 𝙽, the set of possible neural networks with the same architecture but
different weights with . Lifecycle activities at the model training stage essentially
aim to reduce this error, i.e., performing optimisations of the set 𝙽.

b) The Approximation error of 𝙽 measures how far the best classifier in 𝙽 is from
the overall optimal classifier, after isolating the Bayes error. The set 𝙽 is determined by
the architecture of DNNs (e.g., numbers of layers), thus lifecycle activities at the model
construction stage are used to minimise this error.

c) The Bayes error is the lowest and irreducible error rate over all possible classifiers
for the given classification problem [29]. The irreducibility refers to the training process,
and the Bayes errors can be reduced in data collection and preparation. It is non-zero if
the true labels are not deterministic (e.g., an image being labelled as 𝑦1 by one person
but as 𝑦2 by others), thus intuitively it captures the uncertainties in the dataset (𝑋, 𝑌)
and true distribution 𝑓 when aiming to solve a real-world problem with machine learn-
ing. We estimate this error (implicitly) at the initiation and data collection stages in
activities like: necessity consideration and dataset preparation etc.

Both the Approximation and Estimation errors are reducible, and are caused by the
epistemic uncertainties. The Bayes error is irreducible, and caused by the aleatoric un-
certainty. The ultimate goal of all lifecycle activities is to reduce the three errors to 0,
especially for safety-critical applications.

Aleatoric uncertainty, as discussed in [16], may include various data-related issues
such as survey error, missing data, and possible shifts in the data when deployed in real-
world. Definition and measurement of these uncertainties can be done more reasonably
with probabilistic/statistical distributions.

6 S. Bensalem et al.

3.2 Size and Complexity of the AI Models

Another significant challenge is on the AI model itself. While it is believed that larger
– often overparamterised – models can perform well [30], large models cannot be anal-
ysed analytically due to its size and complexity. Formal verification methods that check
the local robustness of a neural network against perturbations are either limited on the
number of neurons in a network (such as [31, 32, 33]) or limited by the number of input
dimensions that can be perturbed (such as [34, 35, 36]). Even the theoretical analysis
in machine learning field, which is usually less rigorous than in formal methods, has
to be conducted on much simpler models such as linear and random projection models
(see e.g., [37]). The situation is getting worse when we have to deal with large language
models, see e.g., [38] for a discussion on their safety and trustworthiness issues.

3.3 Lack of Novel Analysis Methods that are both Rigorous and Efficient

Existing analysis methods from either formal methods or software testing are mostly
aimed to extend their success in traditional software and systems. For example, con-
straint solving and abstract interpretation are popular methods in robustness verification
of neural networks, and structural testing are popular testing methods for neural net-
works. Actually, the traditional verification methods have already been experiencing
scalability problems when dealing with traditional software (up to several thousands
lines of code), and it is therefore unlikely that they are able to scale and work with mod-
ern neural networks (which typically have multi-millions or billions of neurons). For
testing methods, there is a methodological barrier to cross because neurons do not have
clear semantics as variables, so does the layers with respect to the statements. Such mis-
matches render the test coverage metrics, which are designed by adapting the known test
coverage in software testing such as statement coverage, potentially uncorrelated with
the properties to be tested.

Another critical difference from traditional software that is posed on the analysis
methods is the perfection of neural networks. For software to be applied to safety critical
applications, a “possible perfection” notion [39, 40, 41] is used. However, for machine
learning, the failures are too easy to find, and it does not seem likely that a perfect, or
possibly perfect, machine learning model exists for a real-world application. To this end,
a novel design method is needed to ensure that an AI-based system can potentially be
free from serious failures.

Moreover, multiple properties may be required for a machine learning model, e.g.,
robustness, generalisation, privacy, fairness, free from backdoor attacks, etc. However,
these properties can be conflicting (e.g., robustness-accuracy trade-off) and many of
them without formal specifications, which lead to the challenge of lacking effective
methods for the analysis and improvement of them altogether for a machine learning
model.

4 Methodology

The needs of safety-critical systems require that, even facing challenges that are more
significant than traditional software, a legitimate methodology will still provide rigorous

Title Suppressed Due to Excessive Length 7

and provable guarantees, concerning the satisfiability of properties on the autonomous
cyber-physical system under investigation. We conceptualise AI-based systems into five
levels (shown in Fig. 1). For the remainder of this section, we discuss the methodol-
ogy needed at each level and across levels. Specifically, at each level, we consider the
following questions: For sources of uncertainty identified in earlier sections, what met-
rics (e.g., binary, worst-case or probabilistic) shall we use to measure them? How to
efficiently evaluate those metrics? Can we provide any forms of guarantees on the eval-
uations? Moreover, we raise questions that span across different levels: How do metrics
at higher levels break down to metrics at lower levels? If and how the guarantees (in var-
ious forms) from lower levels can propagate and compound to higher levels, ultimately
aiming to make meaningful claims about the entire system.

Fig. 1: Research challenges organised into five conceptual levels with top-down and
bottom-up routes.

Our proposed methodology consists of the following attributes:
– a set of specification languages that describe, and connect, requirements of different

levels;
– a formal method of propagating statistical guarantees about the satisfiability of the

requirements across the system and the component levels;
– a rigorous method of achieving required statistical guarantees at the instance and

the model levels;
This is founded on two threads of state-of-the-art research: a design and co-simulation

framework (Section 4.1) and some design-time verification and validation (V&V) meth-
ods for machine learning models (Section 4.4). The co-simulation framework is to effec-
tively simulate the real-world system and environment to a sufficient level of fidelity. The
V&V methods are to detect vulnerabilities and improve the machine learning model’s
safety and performance. It is noted that, the V&V methods can improve the system but

8 S. Bensalem et al.

may not be able to provide provable safety guarantee, for reasons that we will discuss be-
low. Once the improvement is converged (or certain termination condition is satisfied),
the new methodology is applied for the ultimate achievement of provable guarantees.

4.1 State-of-the-Art 1: A Design and Co-Simulation Framework

This section summarizes the current research on the rigorous design of AI-enabled sys-
tems out of the EU Horizon 2020 project FOCETA.

Design of trustable AI models Design of trust-able AI models requires considering
the complete engineering life-cycle beyond optimizing the model parameters. Figure 2
presents a flow design for the AI model development. We consider the lifecycle phases:
data preparation, training, offline verification and validation, and online deployment.
During the offline V&V, techniques for the falsification and explanation are applied to
discover whether there are failures regarding the decision-making (i.e., falsification) or
failures demonstrating the inconsistency with human’s perception (i.e., explanation).
In addition to their individual functionalities, falsification and explanation may benefit
from mutual interactions, to make sure that a decision failure can be explained and two
inconsistent explanations are tested, see e.g., [42]. A formal verification process is called
only when no error can be found from both falsification and explanation.

Fig. 2: A Verification and Validation Framework for Machine Learning Enhancement

In the context of a real-world learning-enabled system, the offline V&V can be in-
sufficient, due to the scalability of the verification techniques and the environmental
uncertainties that are unknown during offline development (details will be provided be-
low). In such cases, a reliability estimation to analyse the recorded runtime data will be
needed, to understand statistically whether the AI-based system can run without failures
e.g., in the next hour, with high probability.

Another important module in Figure 2 is the enhancement, where the failure cases
are considered for the improvement of the machine learning models, through either data
synthesis or model training.

Title Suppressed Due to Excessive Length 9

Design flow for safety-critical systems with AI components Like any other safety-
critical systems, the design flow for AI-enabled systems shall also cover design and
operation time activities. However, in contrast to classical critical systems where the
environment is largely static and predictable, the use of AI-enabled systems reflects the
need to handle an open environment.

Within FOCETA, we view the engineering of the complete system as analogous to
the engineering of the AI component, where it is important to create a continuous loop
of improvement between development and operation. The current state of the practice
is extended toward transferring knowledge about systems and their contexts (e.g., traffic
situations) from the development to operations and from the operations back to action
in iterative steps of continuous improvements. The methodology enables their ongoing
engineering over the complete life cycle of autonomous learning-enabled systems – from
specification, design, implementation, and verification to operation in the real world with
a particular focus on correctness concerning evolving requirements and the systems’
safety. Moreover, the whole design flow ensures traceability between requirements and
the system/component design.

A key feature is the usage of runtime monitors for the seamless integration of devel-
opment and operations. In contrast to AI component monitors that largely detect situa-
tions such as out-of-distribution, system-level runtime monitors observe a system (part)
via defined interfaces and evaluate predefined conditions and invariants about the sys-
tem behavior based on data from these interfaces. This allows us to identify the need
for AI model updates during continuous testing/verification if, for example, some data
in a test scenario results in a safety property violation or if a new requirement emerges
in response to a previously unknown adversarial threat.

Simulation-based Modeling and Testing at Design Time Using simulation in the
design phase offers multiple advantages. It provides a cost-effective means to verify the
system’s performance over diverse parameter ranges and generate massive scenarios. It
follows that critical methods can be already identified in the virtual environment, and
only those can be replayed in the much more expensive physical setting. Simulation-
based testing allows the generation of scenarios (e.g., with infrequent events) that may
be impossible to realize when the system operates in its environment (e.g., with specific
weather conditions, such as fog or snow). It also enables the creation of safety-critical
situations (e.g., crashes) without compromising the safety of the real-life actors. The
simulation framework shall allow the integration of heterogeneous components that may
be designed with different tools and frameworks. In addition, there is a need to rigorously
argue that the domain gap between synthetic data produced by the simulation engine
and real data observed in the field is closed. In layman’s words, an image being “photo-
realistic" does not necessarily imply its being “real".

Deployment, Operation, and Analysis of AI critical systems at Runtime The anal-
ysis of the AI components and their integration into the AI critical system during de-
sign time, together with protective mechanisms synthesized around AI models, help the
safety assurance of the overall system during real-time operation. These measures are
complemented by runtime verification, which plays a central role during the AI critical

10 S. Bensalem et al.

operation. Runtime monitors allow us to observe the system and its interaction with the
environment and gather helpful information regarding (1) violation of safety or other
requirements and (2) new operational scenarios that were not captured by the training
data and models, and (3) other unexpected situations and anomalies not characterized
by the existing requirements set. To be effective, monitors must be present both at the
component level (AI and classical) and at the system level; the information gathered
by different monitors must be fused to derive useful information that can be used to
i) ignore the situation (e.g., detected object misclassification) that does not impact the
system-level control decision, ii) take a protective measure (e.g., switch from the ad-
vanced to a base controller) or iii) improve the design (e.g., provide a new scenario for
the training data). The last point refers to an evolvable AI critical system, in which in-
formation from the system operation is collected and used to go back to the design and
enhance its functionality based on new insights, thus effectively closing a loop between
the design and the operation phase.

4.2 Properties and Specifications at Different Levels
On the system level, we may use temporal logic to express the required dynamic behav-
ior. There are recent attempts to extend the temporal logic for AI-based systems. For ex-
ample, [43] formalises requirements of an autonomous unmanned aircraft system based
on an extension of propositional LTL, where temporal operators are augmented with
timing constraints. It uses atomic propositions such as “ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >
250” to express the result of the perception module, without considering the sensory in-
put and the possible failure of getting the exact value for ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.
[44] introduces a specification language based on LTL, which utilises event-based ab-
straction to hide the details of the neural network structure and parameters. It considers
the potential failure of the perception component and uses a predicate 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛(x)
to express if x is a pedestrian (referring to the ground truth). However, it does not
consider the predicate’s potential vulnerabilities, such as robustness, uncertainty, and
backdoors. [45] proposes Timed Quality Temporal Logic (TQTL) to express moni-
torable [46] spatio-temporal quality properties of perception systems based on neural
networks. It considers object detectors such as YOLO and uses expressions such as
𝐷0 ∶ 𝑑1 ∶ (𝐼𝐷, 1), (𝑐𝑙𝑎𝑠𝑠, 𝑐𝑎𝑟), (𝑝𝑟, 0.9), (𝑏𝑏, 𝐵1) to denote an object 𝑑1 in a frame
𝐷0 such that it has an index 1, a predictive label 𝑐𝑎𝑟, the prediction probability 0.9,
and is in a bounding box 𝐵1. Therefore, every state may include multiple such expres-
sions, and then a TQTL formula can be written by referring to the components of the
expressions in a state.

For our purpose of having a statistical guarantee for properties at the system level
(see Figure 1), for any temporal logic formula 𝜑, a statistical guarantee is needed, e.g.,
in the form of

𝑃 (𝑒𝑟𝑟(𝜑) ≤ 𝜖) > 1 − 𝛿 (3)
where 𝜑 is a formula such that 𝑒𝑟𝑟(𝜑) denotes that estimation error on the satisfiability
of 𝜑 on the system, and 𝜖 and 𝛿 are small positive constants. In the formula 𝜑, we need
atomic propositions that are related to the perception components. According to different
assumptions, we may have different atomic propositions: instance-level atomic proposi-
tions or model-level atomic propositions. For an instance-level atomic proposition such

Title Suppressed Due to Excessive Length 11

as 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝜖,𝛿 , it expresses that the error of having a 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 in the current input
is lower than 𝜖, under the confidence level no less than 𝛿. In such cases, the statistical
guarantee is established by considering the local robustness (i.e., cell unastuteness as
in [47]). On the other hand, for a model-level atomic proposition such as 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝜖,𝛿 ,
it expresses that the error of having a failed detection among all possible next inputs
is lower than 𝜖, under the confidence level no less than 𝛿. In such cases, the statistical
guarantee is established by considering the reliability as in [47].

The selection between instance-level and model-level atomic propositions depends
on the assumptions. If we believe that a failure on the perception component does not
have a correlation with the failures of other components, a model-level atomic proposi-
tion will be sufficient. On the other hand, if a correlation between failures is expected,
and we want the verification to fully consider such correlations, an instance-level atomic
proposition will be more appropriate and accurate.

Section 4.3 will discuss how to achieve the statistical guarantee (i.e., 𝜖 and 𝛿). For
the model-level atomic propositions, the specification language in [48] considers not
only the functionality (i.e., the relation between input and output) of a trained model
but also the training process (where objects such as training datasets, model parameters,
and distance between posterior distributions are considered). With this, it can express
the safety and security properties that describe the attacks during the lifecycle stages.

4.3 Guarantees Achieved at Component Levels

This section will discuss a potential solution that can be utilised to achieve the statistical
guarantee (i.e., 𝜖 and 𝛿) for an atomic proposition describing certain safety properties as
summarised in [48]. As discussed in Section 4.4, this cannot be achieved by a standalone
machine learning model, even if a V&V framework as in Figure 2 is applied, due to the
insufficiency of machine learning models. We suggest a monitored machine learning
system, i.e., a machine learning model running in parallel with a runtime monitor. As
indicated in Figure 3, for non-ML safety-critical systems with clear specifications about
safety, a runtime monitor often acts like an alarm to alert the unsafe behaviour. On the
other hand, for ML systems without safety specifications but only with samples, a run-
time monitor needs to analyze the samples and predict the safety of the current input
e.g., in the manner of a traffic light system as briefly discussed below. While the predic-
tions might not be completely correct, we expect they are conservative with a provable
guarantee and as accurate as possible.

A runtime monitor checks every input of a neural network and issues warnings when-
ever there is a risk that the neural network might make wrong decision. As discussed
earlier, given the availability of many adversarial attacks, it is unlikely that a neural net-
work itself can achieve “possible perfection” [49] – a notion of traditional safety-critical
software introduced by [39, 40, 41]. The safety of a neural network, however, can po-
tentially be achievable with the support of a runtime monitor. Actually, in the extreme
case, if a runtime monitor is so restrictive that none of the input instances can pass
without warning, the neural network under the runtime monitor is safe (although the
performance is bad).

The design of a runtime monitor for a given neural network is to ensure that the safety
of the monitored neural network can be achieved with guarantees. While the restrictive

12 S. Bensalem et al.

Fig. 3: Runtime Monitors with (for non-ML systems) and without (for ML systems)
specifications

runtime monitor mentioned above suggests absolute safety, it is also undesirable due to
its performance. In the following, we discuss a possible runtime monitor that is able to
achieve statistical guarantee of the form (3). The core idea of this monitor is to repre-
sent the abstracted experiences symbolically, serving as references for future behaviors.
The process involves recording observed data or their learned high-level features for
each decision made by the neural network. These data points are then clustered based
on their similarities, and each cluster is approximated by a box as an abstraction. Every
box b can be described as a tuple (𝑙, 𝑟, 𝑐, 𝑚, 𝑦, 𝑖), where 𝑙 is the location of the box, 𝑟 is
the radius vector of the box, 𝑐 is the cluster that the box belongs to, 𝑚 is the number of
data samples that the box contains, and 𝑦 is the predictive class label of the box, and 𝑖
is the correctness indicator of prediction relating to the abstracted samples. Once these
abstractions are derived, they can be effectively symbolized, and operational symbols
can be defined to establish the runtime monitor. When new data points and decisions
arise, we compare the network’s behavior for a given input with the reference abstrac-
tions. Generally, there exist two types of boxes: positive and negative ones, representing
abstracted good and bad behaviors, respectively. If the behavior is similar to good be-
haviors (inside a positive box), the decision is accepted; if it resembles bad behaviors
(inside a bad box), the decision is rejected.

Our guarantees are on two levels. The first level considers the confidence the runtime
monitor classifies an input as safe or not. Assume that we have a data point that falls
within a box b that is either positive or negative with respect to a label. Since the box
will classify the data point, we can utilise the information in the box (e.g., the known
points that fall within the box) to conduct a Probably Approximately Correct (PAC)
analysis, or utilising Hoeffding inequality such as in [11], to determine a probability and
an error. That is, for each box b, we may have

𝑃b,(𝑒𝑟𝑟b,(𝑐, ℎ) ≤ 𝜖b) > 1 − 𝛿b (4)
for small positive numbers 0 < 𝜖b, 𝛿b < 1∕2, where is the data distribution, 𝑒𝑟𝑟b,(𝑐, ℎ)is the probabilistic error of the hypothesis ℎ (i.e., the probability of ℎ does not hold) in
the box b, with respect to the concept 𝑐 and the distribution , such that 𝑒𝑟𝑟b,(𝑐, ℎ) =
𝑃𝑥∈,𝑥∈b(ℎ(𝑥) ≠ 𝑐(𝑥)), i.e., the probability over 𝑥 drawn from and b that ℎ(𝑥) and
𝑐(𝑥) differ.

The second level considers the probability of a future input that our runtime monitor
can confidently classify. Assume that we have a set of 𝑛 boxes in the space (e.g., the

Title Suppressed Due to Excessive Length 13

hidden space before the Softmax layer) such that they are either positive or negative (we
do not consider uncertain boxes for guarantees) with respect to certain label. We can
use hypothesis testing to determine the probability (the error) of a future point falling
within these boxes, according to the set of known data points. Similarly, we will have

𝑃(𝑒𝑟𝑟𝑀∗,(𝑀) ≤ 𝜖𝑀∗) > 1 − 𝛿𝑀∗ (5)
for small positive numbers 0 < 𝜖𝑀∗ , 𝛿𝑀∗ < 1∕2, where 𝑒𝑟𝑟𝑀∗,(𝑀) = 𝑃𝑥∈(𝑀(𝑥) ≠
𝑀∗(𝑥)) is the probability that the runtime monitor 𝑀 disagrees with the ground truth
𝑀∗ regarding whether an input x is within the confirmed boxes. Moreover, we can re-
place the hypothesis testing with more effective, and more scalable, probability methods
such as MCMC or that we did in [49].

A “combination” (to be analytically derived as future work) of the above levels will
reach a statistical way of conducting reliability estimation over runtime data. A statistical
guarantee of the form

𝑃(𝑒𝑟𝑟(𝑐, ℎ) ≤ 𝜖) > 1 − 𝛿 (6)
will be achieved, where is the operational distribution of the AI component within
the system, 𝑒𝑟𝑟(𝑐, ℎ) denotes the error probability of the AI model 𝑐 with respect to
the ground truth ℎ, and both 𝜖 and 𝛿 are small positive numbers.
Remark 2. The chance constraint (as in Equation (6)) as a statistical guarantee for safety
is not as strong as a deterministic guarantee, which states the absolute missing of failures,
or a probabilistic guarantee, which states the missing of failures with certain probability.
However, the deterministic guarantee is infeasible in practice due to the environmen-
tal uncertainties, as we have discussed for offline verification and validation. Practical
methods are missing on how to achieve tight probabilistic guarantees.

4.4 State-Of-The-Art 2: Offline V&V Methods and Guarantee

This section discusses the existing verification and validation methods, and explains why
they cannot provide the guarantees that are needed for AI-based systems. AI models,
especially Deep Neural Networks, are known to be susceptible to the adversarial attack
and backdoor attack. Given a DNN model 𝑓 , which maps a high dimensional input 𝑥 to
a prediction class 𝑦, adversarial attack and backdoor attack add maliciously generated
perturbations 𝜖 into the benign inputs, leading to the mis-predictions of DNNs (refer to
the survey for the difference between adversarial attack and backdoor attack).

𝑓 (𝑥) = 𝑦 & 𝑓 (𝑥 + 𝜖) ≠ 𝑦 (7)
This section will briefly review the existing V&V methods on the robustness of DNNs
against the adversarial perturbation 𝜖 and discuss the guarantee to the safety of AI model.
Verification Verification techniques are to determine whether or not a property of a neu-
ral network holds within a given range of inputs. The existing verification techniques can
be categorized according to the guarantee they provide. Deterministic guarantees are
achieved by transforming verification of deep neural networks into a set of constraints

14 S. Bensalem et al.

so that they can be solved with a constraint solver, such as Satisfiability Modulo The-
ories (SMT) solver [50, 51], Boolean Satisfiability Problem (SAT) solver [52, 53, 54],
and mixed integer linear programming (MILP) solver [55, 56]. The name “determinis-
tic” comes from the fact that these solvers often return a deterministic answer to a query,
i.e., either satisfiable or unsatisfiable. Some verification techniques can offer one-sided
guarantee, i.e. deep neural network is robust when adversarial perturbation measured
by 𝐿𝑝 norm is bounded less than 𝜖. These approaches leverage the abstract interpreta-
tion [57, 58], convex optimization [59, 60], or interval arithmetic [61, 62] to compute the
approximate bound. Compared to the verification techniques with deterministic guar-
antee, the bounded estimation can work with larger models, up to 10000 hidden neu-
rons, and can avoid floating point issues in existing constraint solver implementations
[63]. To deal with real-world system, which contains the state of the art DNNs with at
least multi-million hidden neurons, some practical verification techniques are developed
to offer converging bounds guarantee and statistical guarantee. Layer-by-layer refine-
ment [6], reduction to a two-player turn-based game [8], and global optimization-based
approaches [64] are developed to compute the lower bounds of robustness by utiliz-
ing the Lipschitz constant and the bounds converge to the optimal value. The statistical
guarantee is achieved by utilizing the statistical sampling methods, e.g. Monte Carlo
based sampling, to estimate the robustness with a certain probability. CLEVER [65] es-
timates the robustness lower bound by sampling the norm of gradients and fitting a limit
distribution using extreme value theory. [66] utilizes the multi-level splitting sampling
to calculate the probability of adversarial examples in the local region as an estimation
of local robustness. The local probabilistic robustness estimation can be aggregated over
the train set to form the global robustness estimation [67]. [47, 68] further propose the
concept of reliability, which is a combination of robustness and generalization, and es-
timated on the operational dataset to provide statistical guarantee on neural networks’
overall performance.
Testing When working with large-scale models, often used in the industry, verification is
not a good option. Verification techniques offer guarantees to the results at the expense of
high computational cost. The cost goes sharply with the increase of model’s complexity.
Testing arises as a complement to verification. Instead of pursuing mathematics proofs,
testing techniques exploit the model in a broad way to find potential faults. The first
category of works is the coverage-guided testing. A large amount of coverage metrics
are designed in consideration of the structure information of DNNs. Structure cover-
age metrics, such as neuron coverage [69], k-multisection neuron coverage [70], neuron
activation pattern coverage [70], Modified Condition/Decision Coverage (MC/DC) for
neuron layers [71] are proposed in the past few years. There are also a few works ded-
icated to designing coverage metrics for Recurrent Neural Networks (RNNs), such as
modeling RNNs as abstract state transition systems and covering different states and
transitions [72], and quantifying one-step hidden memory change and multi-step tem-
poral relation [73]. They are all based on the assumption that the activation of neurons
represents the functionality of DNNs. By achieving a higher coverage rate in proposed
structure coverage metrics, the functionality of DNNs are more thoroughly exercised.
Therefore, structure coverage metrics can guide the generation of test cases as diversi-
fied as possible, and detect different types of defects, such as adversarial examples and

Title Suppressed Due to Excessive Length 15

backdoor input [73]. However, the weak correlation between structure coverage metrics
and the defects can not guarantee that increasing the coverage rate can find more faults
in DNNs.

The second category of works is distribution-aware testing. There has been a grow-
ing body of research focusing on the development of distribution-aware testing tech-
niques for DNNs. To approximate the distribution of training data, deep generative
models such as Variational AutoEncoders (VAE) and Generative Adversarial Networks
(GAN) are commonly used, especially for high-dimensional inputs like images. Berend
et al. [74] propose the first distribution-guided coverage criterion, which integrates out-
of-distribution (OOD) techniques to generate unseen test cases and provides a high level
of assurance regarding the validity of identified faults in DNNs. In a study by Dola et
al. [75], the validity of test cases generated by existing DNN test generation techniques
is examined using VAE. By comparing the probability density estimates of a trained
VAE model on data from the training distribution and OOD inputs, critical insights are
obtained for validating test inputs generated by DNN test generation approaches. To gen-
erate realistic test cases that conform to requirements and reveal errors, Byun et al. [76]
employ a variant of Conditional Variational Autoencoder (CVAE) to capture a manifold
that represents the feature distribution of the training data. Toledo et al. [77] introduces
the first method called distribution-based falsification and verification (DFV), which uti-
lizes environmental models to concentrate the falsification and verification of DNNs on
meaningful regions of the input space. This method is designed to leverage the underly-
ing distribution of data during the process of DNN falsification and verification. Huang
et al. [78] propose a hierarchical distribution-aware testing framework for DNNs. Their
framework takes into account two levels of distribution: the feature level distribution,
captured by generative models, and the pixel level distribution, which is represented by
perceptual quality metrics. Although distribution aware testing can detect more mean-
ingful faults for DNNs, which significantly contribute to the downstream repairing of
DNNs, they still cannot provide the deterministic guarantee to the safety of DNNs.

5 Conclusion

Developing critical systems has always been challenging due to the potential harm caused
by malfunctions, functional insufficiencies, or malicious attacks. The complexity is am-
plified when incorporating learning-enabled components, as the approaches taken by
safety engineers who build the system often differ from those employed by AI/ML en-
gineers who construct the components. Educating the general audience about AI safety
concerns is essential for fostering active engagement in the ongoing discourse. However,
to address the underlying engineering challenges, an interdisciplinary curriculum that
bridges concepts from various fields such as AI/ML engineering and safety engineering
can provide valuable insights and understanding.

We notice that there are two views on system safety in the broader community, the
“binary” view and the “probabilistic” view, which present differing perspectives on how
to approach safety assurance. Proponents of the binary view argue that safety is about
clearly defining the system’s capabilities and limitations, establishing a definitive “safety
boundary”. According to this view, we can confidently operate the system once we have

16 S. Bensalem et al.

a comprehensive understanding of this boundary. However, this viewpoint may hold
primarily for traditional systems without AI components, where the system behavior is
relatively simple and predictable.

The concept in this paper hints that we advocate the probabilistic view that safety for
complex AI-enabled systems should be measured in terms of empirical probabilities6,
as modern systems are becoming increasingly complex, with inherent uncertainties that
make it difficult to determine the system’s safety boundary precisely. In this perspective,
the boundary itself may even appear blurred due to the non-deterministic behaviors ex-
hibited by AI algorithms. Consequently, adherents of the probabilistic view assert that
safety assurance should consider the likelihood of various outcomes and incorporate risk
assessment and mitigation strategies to manage uncertainties effectively.

References

1. M. Kulstad, L. Carlin, Leibniz’s philosophy of mind (1997).
2. D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.-Z. Yang, Xai—explainable artificial

intelligence, Science robotics 4 (37) (2019) eaay7120.
3. S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.-R. Müller, Unmask-

ing clever hans predictors and assessing what machines really learn, Nature communications
10 (1) (2019) 1096.

4. R. Confalonieri, L. Coba, B. Wagner, T. R. Besold, A historical perspective of explainable ar-
tificial intelligence, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
11 (1) (2021) e1391.

5. F. K. Došilović, M. Brčić, N. Hlupić, Explainable artificial intelligence: A survey, in: 2018
41st International convention on information and communication technology, electronics and
microelectronics (MIPRO), IEEE, 2018, pp. 0210–0215.

6. X. Huang, M. Kwiatkowska, S. Wang, M. Wu, Safety verification of deep neural networks,
in: Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg, Ger-
many, July 24-28, 2017, Proceedings, Part I 30, Springer, 2017, pp. 3–29.

7. T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-Chanlatte, S. A.
Seshia, Verifai: A toolkit for the formal design and analysis of artificial intelligence-based
systems, in: International Conference on Computer Aided Verification, Springer, 2019, pp.
432–442.

8. M. Wu, M. Wicker, W. Ruan, X. Huang, M. Kwiatkowska, A game-based approximate verifi-
cation of deep neural networks with provable guarantees, Theoretical Computer Science 807
(2020) 298–329.

9. C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer, et al., Algorithms
for verifying deep neural networks, Foundations and Trends® in Optimization 4 (3-4) (2021)
244–404.

10. S. A. Seshia, D. Sadigh, S. S. Sastry, Toward verified artificial intelligence, Communications
of the ACM 65 (7) (2022) 46–55.

11. C. Huang, Z. Hu, X. Huang, K. Pei, Statistical certification of acceptable robustness for neural
networks, in: Artificial Neural Networks and Machine Learning–ICANN 2021: 30th Inter-
national Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17,
2021, Proceedings, Part I 30, Springer, 2021, pp. 79–90.

6 In statistics, empirical probability refers to the probability of an event based on observed data
or evidence. The empirical probability is also known as experimental probability because it is
derived from actual experimentation or observation.

Title Suppressed Due to Excessive Length 17

12. T. Zhang, W. Ruan, J. E. Fieldsend, Proa: A probabilistic robustness assessment against func-
tional perturbations, in: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, 2022, pp. 154–170.

13. S. Shafaei, S. Kugele, M. H. Osman, A. Knoll, Uncertainty in machine learning: A safety per-
spective on autonomous driving, in: Computer Safety, Reliability, and Security: SAFECOMP
2018 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Västerås, Sweden,
September 18, 2018, Proceedings 37, Springer, 2018, pp. 458–464.

14. J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel,
P. Jung, R. Roscher, et al., A survey of uncertainty in deep neural networks, arXiv preprint
arXiv:2107.03342 (2021).

15. E. Hüllermeier, W. Waegeman, Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods, Machine Learning 110 (2021) 457–506.

16. C. Gruber, P. O. Schenk, M. Schierholz, F. Kreuter, G. Kauermann, Sources of uncertainty
in machine learning – a statisticians’ view (2023). arXiv:2305.16703.

17. C.-H. Cheng, G. Nührenberg, H. Yasuoka, Runtime monitoring neuron activation patterns, in:
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2019,
pp. 300–303.

18. T. A. Henzinger, A. Lukina, C. Schilling, Outside the box: Abstraction-based monitoring of
neural networks, in: ECAI 2020, IOS Press, 2020, pp. 2433–2440.

19. C.-H. Cheng, Provably-robust runtime monitoring of neuron activation patterns, in: 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2021, pp.
1310–1313.

20. A. Lukina, C. Schilling, T. A. Henzinger, Into the unknown: Active monitoring of neural
networks, in: International Conference on Runtime Verification, Springer, 2021, pp. 42–61.

21. C.-H. Cheng, C. Wu, E. Seferis, S. Bensalem, Prioritizing corners in ood detectors via sym-
bolic string manipulation, in: International Symposium on Automated Technology for Veri-
fication and Analysis, Springer, 2022, pp. 397–413.

22. D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
Scenic: a language for scenario specification and scene generation, in: Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
2019, pp. 63–78.

23. S. Zhong, K. Zhang, M. Bagheri, J. G. Burken, A. Gu, B. Li, X. Ma, B. L. Marrone, Z. J.
Ren, J. Schrier, et al., Machine learning: new ideas and tools in environmental science and
engineering, Environmental Science & Technology 55 (19) (2021) 12741–12754.

24. S. L. Brunton, J. N. Kutz, Data-driven science and engineering: Machine learning, dynamical
systems, and control, Cambridge University Press, 2019.

25. C. V. G. Zelaya, Towards explaining the effects of data preprocessing on machine learning,
in: 2019 IEEE 35th international conference on data engineering (ICDE), IEEE, 2019, pp.
2086–2090.

26. Y. Roh, G. Heo, S. E. Whang, A survey on data collection for machine learning: a big data-
ai integration perspective, IEEE Transactions on Knowledge and Data Engineering 33 (4)
(2019) 1328–1347.

27. S. Bensalem, C.-H. Cheng, X. Huang, P. Katsaros, A. Molin, D. Nickovic, D. Peled, Formal
specification for learning-enabled autonomous systems, in: FoMLAS2022, 2022.

28. J. D. Musa, Operational profiles in software-reliability engineering, IEEE Software 10 (2)
(1993) 14–32.

29. K. Fukunaga, Introduction to statistical pattern recognition, Elsevier, 2013.
30. P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, I. Sutskever, Deep double descent:

Where bigger models and more data hurt, in: International Conference on Learning Repre-
sentations, 2020.

http://arxiv.org/abs/2305.16703

18 S. Bensalem et al.

31. J. Li, J. Liu, P. Yang, L. Chen, X. Huang, L. Zhang, Analyzing deep neural networks with sym-
bolic propagation: Towards higher precision and faster verification, in: SAS2019, Springer,
2019, pp. 296–319.

32. R. Li, J. Li, C.-C. Huang, P. Yang, X. Huang, L. Zhang, B. Xue, H. Hermanns, Prodeep: A
platform for robustness verification of deep neural networks, in: Proc. of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, ACM, New York, NY, USA, 2020, pp. 1630–
1634.

33. P. Yang, J. Li, J. Liu, C.-C. Huang, R. Li, L. Chen, X. Huang, L. Zhang, Enhancing robustness
verification for deep neural networks via symbolic propagation, Form. Asp. Comput. 33 (3)
(2021) 407–435.

34. W. Ruan, X. Huang, M. Kwiatkowska, Reachability Analysis of Deep Neural Networks with
Provable Guarantees, in: Proc. of the 27th Int. Joint Conf. on Artificial Intelligence, IJCAI-18,
2018, pp. 2651–2659.

35. W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, M. Kwiatkowska, Global Robustness
Evaluation of Deep Neural Networks with Provable Guarantees for the Hamming Distance,
in: Proc. of the 28th Int. Joint Conf. on Artificial Intelligence, IJCAI-19, 2019, pp. 5944–5952.

36. P. Xu, W. Ruan, X. Huang, Quantifying safety risks of deep neural networks, Complex &
Intelligent Systems (2022).

37. M. Belkin, D. Hsu, S. Ma, S. Mandal, Reconciling modern machine-learning practice and the
classical bias–variance trade-off, Proceedings of the National Academy of Sciences 116 (32)
(2019) 15849–15854.

38. X. Huang, W. Ruan, W. Huang, G. Jin, Y. Dong, C. Wu, S. Bensalem, R. Mu, Y. Qi, X. Zhao,
K. Cai, Y. Zhang, S. Wu, P. Xu, D. Wu, A. Freitas, M. A. Mustafa, A survey of safety and trust-
worthiness of large language models through the lens of verification and validation (2023).
arXiv:2305.11391.

39. B. Littlewood, J. Rushby, Reasoning about the reliability of diverse two-channel systems in
which one channel is “possibly perfect”, IEEE Transactions on Software Engineering 38 (5)
(2012) 1178–1194.

40. J. Rushby, Software verification and system assurance, in: 7th Int. Conf. on Software Engi-
neering and Formal Methods, IEEE, Hanoi, Vietnam, 2009, pp. 3–10.

41. X. Zhao, B. Littlewood, A. Povyakalo, L. Strigini, D. Wright, Modeling the probability of
failure on demand (pfd) of a 1-out-of-2 system in which one channel is “quasi-perfect”, Re-
liability Engineering & System Safety 158 (2017) 230–245.

42. W. Huang, X. Zhao, G. Jin, X. Huang, Safari: Versatile and efficient evaluations for robustness
of interpretability, in: Int. Conf. on Computer Vision (ICCV’23), 2023.

43. A. Dutle, C. A. Muñoz, E. Conrad, A. Goodloe, L. Titolo, I. Perez, S. Balachandran, D. Gi-
annakopoulou, A. Mavridou, T. Pressburger, From requirements to autonomous flight: An
overview of the monitoring ICAROUS project, in: Proc. 2nd Workshop on Formal Methods
for Autonomous Systems, Vol. 329 of EPTCS, 2020, pp. 23–30.

44. S. Bensalem, C.-H. Cheng, X. Huang, P. Katsaros, A. Molin, D. Nickovic, D. Peled, Formal
specification for learning-enabled autonomous systems, in: FoMLAS2022, 2022.

45. A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh, H. Ben Amor,
G. Fainekos, Specifying and evaluating quality metrics for vision-based perception systems,
in: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019, pp. 1433–
1438. doi:10.23919/DATE.2019.8715114.

46. A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, G. Fainekos, Percemon: Online
monitoring for perception systems, in: Runtime Verification, Springer, Cham, 2021, pp. 297–
308.

http://arxiv.org/abs/2305.11391
https://doi.org/10.23919/DATE.2019.8715114

Title Suppressed Due to Excessive Length 19

47. Y. Dong, W. Huang, V. Bharti, V. Cox, A. Banks, S. Wang, X. Zhao, S. Schewe, X. Huang,
Reliability assessment and safety arguments for machine learning components in system as-
surance, ACM Transactions on Embedded Computing Systems 22 (3) (2023) 1–48.

48. X. Huang, W. Ruan, Q. Tang, X. Zhao, Bridging formal methods and machine learning
with global optimisation, in: A. Riesco, M. Zhang (Eds.), Formal Methods and Software
Engineering, Springer International Publishing, Cham, 2022, pp. 1–19.

49. X. Zhao, A. Banks, J. Sharp, V. Robu, D. Flynn, M. Fisher, X. Huang, A safety framework for
critical systems utilising deep neural networks, in: Computer Safety, Reliability, and Security:
39th International Conference, SAFECOMP 2020, Lisbon, Portugal, September 16–18, 2020,
Proceedings 39, Springer, 2020, pp. 244–259.

50. G. Katz, C. Barrett, D. L. Dill, K. Julian, M. J. Kochenderfer, Reluplex: An efficient SMT
solver for verifying deep neural networks, in: International Conference on Computer Aided
Verification, Springer, 2017, pp. 97–117.

51. R. Ehlers, Formal verification of piece-wise linear feed-forward neural networks, in: Auto-
mated Technology for Verification and Analysis: 15th International Symposium, ATVA 2017,
Pune, India, October 3–6, 2017, Proceedings 15, Springer, 2017, pp. 269–286.

52. N. Narodytska, Formal analysis of deep binarized neural networks., in: IJCAI, 2018, pp.
5692–5696.

53. N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, T. Walsh, Verifying properties
of binarized deep neural networks, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32, 2018.

54. C.-H. Cheng, G. Nührenberg, C.-H. Huang, H. Ruess, Verification of binarized neural net-
works via inter-neuron factoring: (short paper), in: Verified Software. Theories, Tools, and
Experiments: 10th International Conference, VSTTE 2018, Oxford, UK, July 18–19, 2018,
Revised Selected Papers 10, Springer, 2018, pp. 279–290.

55. C.-H. Cheng, G. Nührenberg, H. Ruess, Maximum resilience of artificial neural networks, in:
Automated Technology for Verification and Analysis: 15th International Symposium, ATVA
2017, Pune, India, October 3–6, 2017, Proceedings 15, Springer, 2017, pp. 251–268.

56. A. Lomuscio, L. Maganti, An approach to reachability analysis for feed-forward relu neural
networks, arXiv preprint arXiv:1706.07351 (2017).

57. T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, M. Vechev, Ai2: Safety
and robustness certification of neural networks with abstract interpretation, in: 2018 IEEE
symposium on security and privacy (SP), IEEE, 2018, pp. 3–18.

58. M. Mirman, T. Gehr, M. Vechev, Differentiable abstract interpretation for provably robust
neural networks, in: International Conference on Machine Learning, 2018, pp. 3575–3583.

59. E. Wong, Z. Kolter, Provable defenses against adversarial examples via the convex outer
adversarial polytope, in: International Conference on Machine Learning, 2018, pp. 5283–
5292.

60. K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, P. Kohli, A dual approach to scalable
verification of deep networks., in: UAI, Vol. 1, 2018, p. 3.

61. S. Wang, K. Pei, J. Whitehouse, J. Yang, S. Jana, Formal security analysis of neural networks
using symbolic intervals, in: 27th {USENIX} Security Symposium ({USENIX} Security 18),
2018, pp. 1599–1614.

62. J. Peck, J. Roels, B. Goossens, Y. Saeys, Lower bounds on the robustness to adversarial per-
turbations, Advances in Neural Information Processing Systems 30 (2017).

63. A. Neumaier, O. Shcherbina, Safe bounds in linear and mixed-integer linear programming,
Mathematical Programming 99 (2004) 283–296.

64. W. Ruan, X. Huang, M. Kwiatkowska, Reachability analysis of deep neural networks with
provable guarantees, arXiv preprint arXiv:1805.02242 (2018).

65. T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, L. Daniel, Evaluating the
Robustness of Neural Networks: An Extreme Value Theory Approach, in: ICLR2018, 2018.

20 S. Bensalem et al.

66. S. Webb, T. Rainforth, Y. W. Teh, M. P. Kumar, A statistical approach to assessing neural
network robustness, in: International Conference on Learning Representations.

67. B. Wang, S. Webb, T. Rainforth, Statistically robust neural network classification, in: Uncer-
tainty in Artificial Intelligence, PMLR, 2021, pp. 1735–1745.

68. X. Zhao, W. Huang, A. Banks, V. Cox, D. Flynn, S. Schewe, X. Huang, Assessing the re-
liability of deep learning classifiers through robustness evaluation and operational profiles,
Workshop on AI Safety at IJCAI-21 (2021).

69. K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated whitebox testing of deep learning
systems, in: proceedings of the 26th Symposium on Operating Systems Principles, 2017, pp.
1–18.

70. L. Ma, F. Juefei-Xu, J. Sun, C. Chen, T. Su, F. Zhang, M. Xue, B. Li, L. Li, Y. Liu, J. Zhao,
Y. Wang, DeepGauge: Comprehensive and multi-granularity testing criteria for gauging
the robustness of deep learning systems, in: Automated Software Engineering (ASE), 33rd
IEEE/ACM International Conference on, 2018.

71. Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, D. Kroening, Deepconcolic: Testing
and debugging deep neural networks, in: (ICSE2019), 2019.

72. X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, J. Zhao, Deepstellar: Model-based quantitative analysis
of stateful deep learning systems, in: Proc. of the 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 477–487.

73. W. Huang, Y. Sun, X. Zhao, J. Sharp, W. Ruan, J. Meng, X. Huang, Coverage-guided testing
for recurrent neural networks, IEEE Transactions on Reliability 71 (3) (2021) 1191–1206.

74. D. Berend, Distribution awareness for ai system testing, in: 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
IEEE, 2021, pp. 96–98.

75. S. Dola, M. B. Dwyer, M. L. Soffa, Distribution-aware testing of neural networks using gen-
erative models, in: 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), IEEE, 2021, pp. 226–237.

76. T. Byun, A. Vijayakumar, S. Rayadurgam, D. Cofer, Manifold-based test generation for im-
age classifiers, in: 2020 IEEE International Conference On Artificial Intelligence Testing
(AITest), IEEE, 2020, pp. 15–22.

77. F. Toledo, D. Shriver, S. Elbaum, M. B. Dwyer, Distribution models for falsification and ver-
ification of dnns, in: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, 2021, pp. 317–329.

78. W. Huang, X. Zhao, A. Banks, V. Cox, X. Huang, Hierarchical distribution-aware testing of
deep learning, arXiv preprint arXiv:2205.08589 (2022).

	What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety-Critical Systems

