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Abstract. Machine learning is an increasingly popular method for mod-
eling complex system. A common machine learning model is the neural
network. They can be trained to represent complicated functions to a
high accuracy. However they often grow large and complex. Recent work
is looking in how to abstract networks to yield simpler representation,
while retaining some property of the original network, e.g., for every in-
put the abstracted networks output is at least as large as the original.
In this work, we build on previous ideas and extend it to also consider
the input layer.
Sometimes, the input vector has a large size, while only a few of the ele-
ments are significant in the computation of the output. In this paper, we
propose to use a trained neural network model to identify insignificant
input elements, i.e, elements which do not contain important informa-
tion. We show how the presented abstraction method for the input layer
can be utilized to achieve this.

Keywords: Neural network · Abstraction · Dimensionality reduction ·
Feature Selection.

1 Introduction

Machine learning is an increasingly popular method for modeling complex sys-
tem. By presenting a machine learning algorithm with a set of training patterns
(relating inputs to outputs), one can obtain a model which can predict the output
for an arbitrary input (in the input domain). They can be trained to represent
complicated functions to a high accuracy. However they often grow large and
complex. Recent work is looking in how to abstract networks to yield simpler
representation, while retaining some property of the original network, e.g., for
every input the abstracted networks output is at least as large as the original.

In this work, we build on previous ideas and extend it to also consider the
input layer [1]. We consider how input nodes can be eliminated from a network
in such a manner that an over/under-approximating network is obtained. Such
a network would not be as accurate, but if one is tasked with ensuring that a
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certain bound is not breached, it can still be useful. For example, if we are using a
neural network to predict processor load w.r.t. a set of functions being executed
on the processor, with this approach we could eliminate inputs, effectively adding
their worst case load (or an over-approximation of it) statically to the output.
If the abstracted network would then state that the bound is respected w.r.t.
a set of activated functions, we know that the actual load would also be below
the threshold. Additionally, the resulting network would have a smaller input
dimensionality, which could make it more efficient, especially if we wish to verify
some property of it (which can be resource-consuming for larger networks).

In some cases the input vector has a large size, while only a few of the elements
are significant in the computation of the output. To reduce the size of the input
vector, one can for example apply principal component analysis (PCA) to obtain
a smaller representation while retaining the most important information [2].
In this paper, we show how a combination of an over-approximating and an
under-approximation network can be combined to identify insignificant input
elements (i.e., not affecting the output by more than a small delta). While the
PCA method generates a reduced-dimensional data representation, our approach
focuses on identifying a subset of elements to represent the data. This approach
imposes greater constraints but facilitates a more direct connection between the
new input domain and the original one, as it remains a subset, enabling a form
of feature selection [3]. Moreover, it allows us to obtain information regarding
individual variables. Understanding the insignificance of certain inputs can be
valuable by itself, revealing properties about the original problem.

We begin by presenting background in Sec.2, including brief presentation of
neural networks, including verification and abstraction techniques. In Sec. 3 we
show how inputs can be removed to obtain an over/under-estimating network
with smaller dimension, followed in Sec. 4 by a method of identifying insignificant
inputs. Finally we present our conclusions and future work in Sec. 6.

2 Background

We begin by introducing some notation regarding vectors. We use x = {x1, . . . , xn}
to denote vectors, where x[i] = xi. We denote substitution of the i-th ele-
ment by c as x[xi = c] = {x1, . . . , xi−1, c, xi+1, . . . , xn}. In this paper all vec-
tors are over real-numbers. Given a vector x = {x1, . . . , xi, . . . , xn}, let xi =
{x1, . . . , xi−1, xi, xi, xi+1 . . . , xn}, that is the vector x with the i-th element re-
peated once. Let x \ xi = {x1, . . . , xi−1, xi+1 . . . , xn}, i.e., the vector x with xi

removed. We let Xmax
i and Xmin

i represent the maximum and minimum values
of the domain of xi, respectively.

2.1 Neural Networks

Neural networks (NNs) are a widely used form of machine learning [4]. They
consist of interconnected neurons trained on input-output pairs to learn and
make predictions. Each neuron in a layer is connected to each neuron in the
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previous layer via an edge with a weights. When computing the output value
of a node, an activation function is applied to the sum consisting of a node
bias and each weight of every incoming edge multiplied by the output value of
its corresponding node. In this paper, for simplicity we focus on networks that
contain the input layer (nodes I1, . . .

1), one hidden layer (nodes H1, . . . ) and a
single output node (node O1). The input and output layer has no activation (i.e.,
the identity function), while the hidden layer uses the ReLU activation function,
i.e.,:

Hi = ReLU(WH[i]I+BH[i]),

where I is the output of the input layer,, W[i],B[i] are the weights and bias of
hidden node Hi, and ReLU is the nonlinear activation function. Let e(Ii, Hj) be
the weight of the edge connecting input node Ii with hidden layer node Hj . We
use NN (x) to denote the output of the neural network NN with input x.
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Fig. 1. Simple neural network.

Example 1. In Fig. 1 a simple neural network NN is presented. It has two input
nodes I1, I2, three hidden nodes H1, H2, H3 and one output node O1, as well as
(for example) weights e(I2, H2) = −0.37 and e(H2, O1) = 1.15. Consider feeding
the input vector x = (0, 1) into the network, then:

H1 = ReLU(0.02x1 + (−0.68)x2 − 0.04) = 0

H2 = ReLU(−0.64x1 + (−0.37)x2 + 0) = 0

H3 = ReLU(9.76x1 + 0.06x2 + 0.07) = 0.13

O1 = −0.46H1 + 1.15H2 + 10.2H3 − 0.17 = 1.326

Thus NN (x) = 1.326
1 For convenience, we will overload and use the notation Ni to refer both to the node
Ni, and its output value.
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2.2 Verification of NNs

Recently, significant efforts have been put into the verification of NNs. [5] There
exist many aspects of networks that can be checked, and many tools for checking
NNs have arisen in the past several years. [6] For example, the verification tool
Marabou [7] can prove a linear bound on the output under given constraint
on the input in a neural network with piece-wise linear activation functions, of
which ReLU is one.

Example 2. Consider the neural network presented in Fig. 1. Without loss of
generality, and for simplicity, we omit the bias terms in the neural network.
When we restrict the real-valued inputs x1 and x2 to the range between zero
and one, it appears that the output can never be less than 0.5. To rigorously
establish this, we can employ Marabou by setting input constraints as follows:
P (x̄) = 0 ≤ x1 ≤ 1 ∧ 0 ≤ x2 ≤ 1, and defining the desired output property as
Q(NN (x̄)) > 0.5 (note that, in practice, we use the property −Q(NN (x̄)) ≤ −0.5
since Marabou requires the constraint to be in the form of a less-than-or-equal
comparison, though the mathematical meaning remains equivalent). It’s impor-
tant to highlight that we need to negate the property we are seeking—essentially,
we are querying Marabou for the existence of an input x̄ such that the output
is greater than -0.5.

2.3 Abstracting NNs

In this section we present a short summary of the work in [1] by Elboher et. al.,
as our work is significantly based upon it. In [1], a methodology for abstracting
and refining neural networks is presented. The motivation is to create, for a given
neural network NN , a simpler network (i.e., with fewer nodes) NN ′ such that
NN (x) ≤ NN ′(x).

The core idea of their methodology is to classify all nodes into categories,
how they are contributing to the final output: we call a node n green if increasing
the input value to n results in the network output increasing, otherwise we call
it red. In this paper we present only a simplified approach with one hidden layer.
With multiple hidden layers sometimes nodes need to be split to allow for single
color per node (in [1] they classify on two orthogonal categories, while here we
simplify to one color).2 Formally, for the hidden layer we color each node as
follows:

color(Hi) =

{
green, if e(Hi, O1) ≥ 0

red , if e(Hi, O1) < 0

Example 3. Consider the network in Fig. 1, if we increase the output of node
H3, the input of O1 will increase, thus increasing the output of the network.
Therefore, node H3 is green. On the other hand, increasing the output of node
H1 actually decreases the value of O1 (since it is multiplied by the weight −0.46.
Thus, H1 is considered red. We show the colored network in Fig. 2.

2 We intend for a full paper to expand this and integrate the full algorithm with
multiple layers.
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Fig. 2. Colored neural network.

3 Removing Inputs by Over/Under-estimation

In their work, Elboher et. al. also define an abstraction operator, which we base
our idea in this section.3 In this section we present how we can remove an input
node xi from a neural network NN creating an overestimating network NN+

i ,
such that

∀x : NN (x) ≤ NN+
i (x \ xi). (1)

Assume that NN is already extended with nodes and classified according to the
methodology described in Sec. 2.3. To remove input xi. Let H

+ be the set of all
the nodes in the hidden layer which satisfy color(H) = green, and conversely
H− the set of all the nodes in the hidden layer which satisfy color(H) = red.
Intuitively, we wish to split the Ii into two pseudo-nodes I

+
i and I−i , such that the

former would be green (i.e., contributing to the increase of the network output)
and the latter red (i.e., contributing to the decrease of the network output).
Formally, we define a new network NN ′

i with input node Ii replaced by I+i and
I−i such that:

∀Hj ∈ {H1, . . . Hn} e(I+i , Hj) =

3 We do not implement the abstraction and refinement loop of [1], but it could also
be helpful for our work.
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if(e(Ii, Hj) ≥ 0 ∧ color(Hj) = green)

e(Ii, Hj), ∨
(e(Ii, Hj) ≤ 0 ∧ color(Hj) = red)

if(e(Ii, Hj) ≥ 0 ∧ color(Hj) = red)

0, ∨
(e(Ii, Hj) ≤ 0 ∧ color(Hj) = green)

and

∀Hj ∈ {H1, . . . Hn} e(I−i , Hj) =

if(e(Ii, Hj) ≥ 0 ∧ color(Hj) = green)

e(Ii, Hj), ∨
0 ≤ 0 ∧ color(Hj) = red)

if(e(Ii, Hj) ≥ 0 ∧ color(Hj) = red)

(e(Ii, Hj), ∨
(e(Ii, Hj) ≤ 0 ∧ color(Hj) = green)

For the resulting network NN ′
i, we have NN (x) = NN ′

i(x
i). Now, for any

input vector xi, if we modify the input value to I+i with Xmax
i the network

output can only grow, i.e.:

NN ′
i(x

i[xi = Xmax
I ] ≥ NN ′

i(x
i)

In similar vein, if we replace the value for input node I−i with Xmin
i the

output also grows:

NN ′
i(x

i[xi+1 = Xmin
I ] ≥ NN ′

i(x
i)

Finally, we modify NN ′
i such that we obtain a network which always treats

the input of I+i as Xmax
I , and of I−i as Xmin

I . Since in such a network, the
inputs for I+i , I−i are ignored, we can remove the input nodes by propagating
the constant Xmax

I through I+i by multiplying each outgoing edges weight with
Xmax

I and add to the bias of the corresponding node in the hidden layer (and
analogously for I−i ). Note that the network obtained with these two input nodes
fulfills Eq. (1) and we denote this network NN+

i . The procedure for doing this
is outlined in Alg. 1.

Theorem 1.

∀x : NN (x) ≤ NN+
i (x \ xi)



Abstraction-based Reduction of Input Size for Neural Networks 7

Example 4. Consider the network in Fig. 1. We can apply the over-estimation
strategy to the first input node to obtain the network shown in Fig. 3. Note that
since we are doing an over-approximation and the edges from x1 to H1 and H2

are a positive weight to a red node, and a negative weight to a green node, they
are not added to the bias. However, the final weight from x1 to H3 is multiplied
with one and added to the bias of H3 as it is the maximum effect the x1 input
can have on the output of H3.

Algorithm 1: Algorithm for creating NN+
i .

Input: Neural network NN and input node Ii
Output: Output Neural network NN+

i

Color network NN ;

Replace Ii with I+i and I−i s.t. I+i can be colored green and I+i red;

for each e(I+i , Hj) ̸= 0 do
BH[j]← BH[j] + e(I+i , Hj) ∗Xmax

i ;

for each e(I−i , Hj) ̸= 0 do
BH[j]← BH[j] + e(I+i , Hj) ∗Xmin

i ;

Remove I+i and I−i ;
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Fig. 3. Over-approximating neural network with input x1 removed.

We can in a symmetric way define a network NN−
i underestimating the

resulting value.

Theorem 2.
∀x : NN (x) ≥ NN−

i (x \ xi)
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4 Identifying Insignificant Inputs

One of the challenges in using neural networks, especially when we lack knowl-
edge about the network’s internal structure, is dealing with the potentially high
dimensionality of input data. Input vectors can comprise hundreds, or even more,
values. In many cases, only a subset of these inputs may significantly influence
the output, while the values assigned to the remaining inputs have a negligible
impact on the output, often approximated as a small constant.

Definition 1. For a NN with input range X̄ and a particular input xi ∈ Xi,
we call xi insignificant (w.r.t. some L ∈ R) if

∀x = {x0, . . . , xn} ∈ X̄ :

(
max
c∈Xi

NN (x[xi = c])− min
c∈Xi

NN (x[xi = c])

)
≤ L

Intuitively, this means that for any input vector, varying xi will not change
the resulting output by more than L. For a given neural network, it can be
interesting to identify the insignificant inputs, as for low enough L, these could
be disregarded as their impact is negligible.

Example 5. Consider a neural network designed to estimate the total load on a
computer system, where each input xi is either zero or one, indicating whether
a function fi of the system is activated. The output should be a prediction of
the CPU load of the system as a percentage.

If a function fi can be identified as insignificant w.r.t. to L = 0.1, it might be
possible to ignore it in an analysis as its impact on the final load is very small.

As the domains can be infinite, computing the maximum and minimum values
as required in definition 1 is not possible by enumeration. Instead, we propose
to use the Marabou verification tool to establish if a value is insignificant or not.
We begin by presenting how we can construct a difference neural network.

Definition 2. We define a difference neural network for an input node xi as
NN diff

i , s.t.,

NN diff
i (x) = NN+

i (x)−NN−
i (x)

We present a high-level algorithm for constructing a difference network in
Alg. 2. The resulting network can then be analyzed using Marabou to establish
if it is the case that the output is less than the limit L.

Example 6. Consider the neural network in Fig. 1. It is obtained after training
on a data set generated by the function f(x1, x2) = 100x1 + x2. If we apply
Alg. 2 to the network and the first input node, we obtain the network shown in
Fig. 4. Note that the upper and lower half of the network are identical except
for the biases on the hidden nodes, as well as the weight from the subtraction
layer to the output layer (one for top half, negative one for bottom half). If we
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Algorithm 2: Algorithm for creating a difference network.

Input: Neural network NN , Input node Ii
Output: Output result Difference neural network NN diff

i

Create NN+
i ,NN−

i as described in Alg. 1.;
Merge the two input layers;
Create an extra layer, computing the difference between the two output nodes;
Create a final output layer with one node;

apply Marabou and verify, the results indicates that the first input is significant,
as expected.
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Fig. 4. Difference network NN diff
1 , i.e., input x1 removed. We omit all edges with weight

zero.

5 Related Work

This work is mainly based on [1], and there have been several extensions or work
closely related to the paper. One extension looks in how to retain information
between different verification queries on similar networks [8]. This could also be
possible for our case, perhaps the removal of two different insignificant input
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nodes requires a lot of the same work. Another example identifying nodes in a
network which always produces an output almost zero (thus enabling the removal
of them) [9]. In [10] the authors reformulates a DNN minimization problem as
a DNN verification problem, and constructs a provably minimal network (which
is still sufficiently close to the original).

Moreover, there are different approaches towards abstracting neural net-
works, see, e.g. [11]. It would be interesting to study if these methods could
also be extended to the input layer, as they give different kinds of guarantees on
the abstraction, potentially enabling different use cases.

Identifying insignificant inputs can be seen as a form of feature selection,
see, e.g., [3]. However, since we aim for an approximated result, our method is
allowed a bit more leeway when discarding input dimensions. We have not had
time to look into how this premise could affect other popular feature selection
methods.

6 Conclusions

In this paper we propose a new methodology for removing inputs by creating
an over/under-approximating network. We present a method for using this to
detect insignificant inputs.

6.1 Future Work

Our plan is to extend this work to handle multiple hidden layers. We will try
to estimate the magnitude of the over-estimations, and how the structure and
training of the network can affect it. Furthermore, we wish to investigate the
capability of detecting insignificant inputs in more complicated examples, and
in particular applying it to an industrial use case.
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