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Abstract. Since the release of Open AI’s generative pre-trained trans-
former (GPT), researchers have been attempting to use such a powerful
tool for text generation, such as natural language translation and code
generation. In this paper, we explore an interesting usage of GPT in help-
ing engineers understand and even detect flaws in formal models, which
are well-known for being rigour but hard to understand by non-experts.
We select several simple formal models in the fields of model check-
ing and theorem proving. Through experiments, we aim to investigate
three research questions that we compose to evaluate the powerfulness
of GPT in interpreting existing formal models. As a preliminary report
of our study, this paper only contains partial of the aim of our study. We
outline in future work what a full article will contain.
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1 Introduction

In the last year, large language models (LLM) have exploded in popularity, and
have been applied to many different use cases. OpenAI’s generative pre-trained
transformer (GPT-3.5 & 4) have drawn wide attention from the mainstream
media due to its remarkable performance of generating natural-language texts
that are hard to distinguish from human-written words.

Therefore, plenty of studies have been carried out in the domains of language
translation [16], text generation [20][21], model/code generation [17], and even
human/robot motion generation [24][8]. Among these studies, there is a branch
that focuses on using LLM in generating models that are hard to understand
by non-experts, in particular, formal models such as temporal logic expressions
[13][9] and automata [23].

Formal models are well-known for their precious mathematical foundation
and ability to provide rigorous analysis of design artefacts. However, such mod-
els are hard to understand without detailed documentation and have a steep
learning curve, so the aforementioned studies have been attempting to transform
natural language (NL) descriptions into formal models. However, few researchers
have considered a research question in the opposite direction, that is, given an
existing formal model, can we generate explanatory texts to help engineers un-
derstand the function and even detect flaws of the model?
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In this paper, we aim to explore the powers of GPT (in particular Chat-
GPT version 3.5) in helping engineers understand formal models, which lack
comprehensive explanatory documentation.

The remainder of the paper is organized as follows. Section 2 introduces the
background knowledge of this paper. Section 3 defines the research questions that
we aim to study before we show the preliminary results of model explanation by
ChatGPT in Section 4. Finally we conclude in Section. 5.

2 Background

In this paper, we work with ChatGPT version 3.5, a large language model by
OpenAI. Using it requires writing prompts, which helps ChatGPT to generate
responses that continue the conversation or expand on the given prompts. A
prompt in this paper can be long, including formal models of hundreds of lines,
and also takes into account previous prompts, i.e., it is possible to present a
formal model and then make several prompts about it.

2.1 Formal Methods

In the field of formal methods, there are two main branches: model checking
[10] and theorem proving [11]. Since there is a large number of formal models in
each field, we have selected three topics to study: timed automata [1] (models
described in UPPAAL [19]), satisfiability modulo theories (SMT) [3] and inter-
active theorem proving (proofs described in Coq [5]). These choices represent
popular models and tools, but a more extensive study could include others as
well.

(a) (b) (c)

Fig. 1. An example of UPPAAL timed automata and different presentations of its
state space. (a) The syntactic presentation of UTA. (b) One semantic presentation of
the UTA: a timed transition system. (c) Another semantic presentation of the UTA: a
symbolic timed transition system.

Timed Automata Formal models have rigorous definitions of syntax and se-
mantics. For example, a well-known model checker UPPAAL [19] uses and ex-
tends timed automata [1] as the modelling language. We present an example
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Fig. 2. A part of the XML file of the example UPPAAL in Figure 1(a)

of UPPAAL timed automata (UTA) in Fig. 1(a) and different presentations of
its semantics in Fig. 1(b) and Fig. 1(c). The syntactic presentation of UTA is
static and stored as an XML file by UPPAAL. Fig. 2 partially shows the XML
file of the example UTA in Fig. 1(a). All the syntactic notions of UTA, such as
locations, are clearly declared in this file. Moreover, comments are also included
in this XML file, such as explanations of the codes. Intuitively, these comments
should be helpful for ChatGPT to interpret the model.

Although the syntactic presentation of a formal model is often explicit, the
semantics of a formal model are underneath its syntactic presentation, which is
not explicitly shown. For example, by looking at Fig. 1(a) or reading the XML
file in Fig. 2, it is difficult for one who does not have the expertise of UPPAAL
and timed automata to interpret model’s semantics. Additionally, the original
definition of the semantics of timed automata is timed transition systems [1] (see
Fig. 1(b) as an example). UPPAAL uses Difference Bound Matrices (DBM) [4] to
represent the semantic model of UTA, which is needed for symbolic verification.

To manually obtain the semantic models of large and complex UTA is ex-
tremely difficult, if not entirely impossible. Hence, model checkers, such as UP-
PAAL, are designed for automatically executing the formal models and gener-
ating their semantic models (aka, state spaces). For the sake of saving memory
space, these tools often employ the so-called on-the-fly exploration of the state
spaces when verifying the models. In summary, the semantic presentation of a
formal model is extremely difficult to obtain by only reading its syntactic pre-
sentation without executing the model. We believe ChatGPT 3.5 may be able
to interpret formal models at the syntactic level, but cannot fully understand
their semantics. However, we wish to investigate to what extent it can provide
an intuition.

Satisfiabilty Modulo Theories Satisfiability Modulo Theories (SMT) is the
problem of determining if a formula is satisfiable or note, i.e., if there is a model
satisfying formula. We only give a brief overview of SMT and do not consider
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the details, but in principle a problem consists of a set of variables (of different
types) and a set of constraint over them (usually with a Boolean structure). A
SMT solver then tries to find assignment to variables such that all constraints
are satisfied. This process involves using so called theory-solvers, each design to
handle a specific background theory (e.g., linear integer arithmetic).

An SMT instance is often written in a standard format, calletd SMT-LIB[2].
In Figure 3 an example SMT instance is shown. It begins by stating that the
logic involved is Quantifier-Free Linear Integer-Arithmetic (QF LIA), followed
by a declaration of two integer variables (called constants) x, y, a constraint that
x > y, and finally a command checking if the problem is satisfiable or not.

(set-logic QF_LIA)

(declare-const x Int)

(declare-const y Int)

(assert (> x y))

(check-sat)

Fig. 3. Example SMT instance.

Comments can also be included (preceded by semi-colon), and instances are
often passed to an SMT solver, e.g., Z3 [12], which provides an answer if it is
satisfiable or not. In the former case, it will also provide a model, e.g., assign-
ments to all the variables of the problem. In this instance, a solution could be
x = 1, y = 0.

Interactive Theorem Proving Achieving fully automated generation of proofs
of formulas is a very hard task. An interactive theorem prover relies on inter-
action between the user and a proof-assistant. The resulting product becomes
a proof which has been checked and is guaranteed to be correct, thus imply-
ing the correctness of the result of the proof. The syntax of such proofs can be
tricky to understand even when the formula is simple, especially for non-experts.
Consider, for example, the proof in Figure 43. It is a simple proof the applying
negation twice cancels out, but it is not obvious at a glance.

3 Problem Description

In this section, we introduce the research questions that this paper answers and
define the research problem of this study.

3 From https://gist.github.com/alpaylan/54cd1482e242e15283bf1c351cbe8cdc

https://gist.github.com/alpaylan/54cd1482e242e15283bf1c351cbe8cdc
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Inductive bool: Type :=

| true

| false.

Definition negb (b:bool) : bool :=

match b with

| true -> false

| false -> true

end.

Theorem negb_involutive : A b : bool,

negb (negb b) = b.

Proof.

intros b. destruct b eqn:E.

- reflexivity.

- reflexivity.

Qed.

Fig. 4. Example Coq proof. Syntax slightly modified to work in UTF-8 encoding.

3.1 Research Questions

Formal models are well-known for their precise mathematical foundation, which
supports rigorous analysis and verification. However, the mathematical notions
and abstract presentations in such models often hinder engineers from using
them in their daily work. As our world is becoming more and more digitalized
and emerging complex safety-critical systems such as autonomous vehicles are
approaching, traditional methods for system development and verification are
not sufficient to guarantee the correctness of such systems.

Many fields combine machine learning and formal methods [18], such as au-
tonomous systems [6][15], cyber-physical systems [22], and multi-agent systems
[14]. One interesting phenomenon in this research direction is that most stud-
ies focus on either the correctness guarantee of machine learning or model/code
generation by using machine learning. However, few studies have paid attention
to the knowledge gap between practitioners and researchers, that is, formal mod-
els are hard to learn and understand! Concretely, we identify several scenarios
where engineers need help in understanding models of their systems.

1. When facing a historical system that does not have sufficient documentation,
engineers need help in understanding what the system is designed for and
even a detailed explanation of the function of a specific component.

2. When new employees join a team, they need to understand the existing
system with possibly limited help from their colleagues.

3. In agile development, engineers need to quickly and automatically generate
documents of their design artefacts.
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4. When a third party needs to test a system and the design artefacts are
not self-explanatory, they need help in understanding the diagrams in the
documentation.

In all these scenarios, engineers need an interpreter to help them understand
the design artefacts of the system. However, due to the limited resources that
they have and the restricted time for the projects, the help that they can get from
the organisation is often very limited. In this paper, we study how ChatGPT can
be leveraged to help us explain system artefacts, in particular formal models. In
summary, we define the research question that this paper aims to answer.

Research Question 1 (Interpretation and Explanation) To what extent
do large language models have the potential to interpret and explain formal mod-
els used by different verification techniques in natural language?

Research Question 2 (Assistance for Modeling) Can a large language model
assist in development of a formal model, by providing help on modification of ex-
isting or introduction of new parts?

Research Question 3 (Generalization) How is the interpretation of Chat-
GPT affected when studying models that are exposed on the Internet before the
day they finish training better than those that are not.

ChatGPT is a pre-trained LLM, which means when we use them to interpret
models, they have already been trained by using the online datasets [7]. Table 1
shows the mixture of datasets used for training GPT-3.5. We wish to investigate
how much of the capability of ChatGPT can be generalized to arbitrary models.
For example, how is the explanation of a model affected if we rename variables,
or move sections of the model around, making it different syntactically while
retaining the exact semantics.

Table 1. Datasets used to train GPT-3 [7].

Dataset
Quantity
(tokens)

Weight in
training mix

Common Crawl (filtered) 410 billion 60%

WebText2 19 billion 22%

Books1 12 billion 8%

Books2 55 billion 8%

Wikipedia 3 billion 3%

We would also like to study the differences in model interpretation between
the models that were published before GPT-3 and the ones that were published
later or not unpublished at all.
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4 Interpretating and Explaning Formal Models

In this section, we discuss how LLMs can be used how to explain and interpret
the selected formal models. We present our current findings as a set of use cases.

4.1 Use Case (UPPAAL) Train Gate

We begin by studying the train model, which is provided by deafult with UP-
PAAL 5.0. We input the entire model (∼ 400 lines) and ask ChatGPT: ”What
does this model do?”. After the reply we asks for clarification about a specific
query: ”Could you explain this query in more depth Verifying that when a train
approaches, it eventually crosses the bridge.”. We do not present the full replies
here but highlight interesting parts.

Liveness Properties In the reply, ChatGPT correctly identifies that the UP-
PAAL query is a liveness property:

The query ”Verifying that when a train approaches, it eventually crosses
the bridge” is a liveness property

This is followed by an explanation of liveness properties in general (excluded
here). What is interesting is the description of this particular query’s meaning:

This means that every time a train initiates the ”approach” action
(Train(i).Appr), it should lead to the ”crossing” state (Train(i).Cross) for
that specific train.

which is followed by an interpretation of the query:

In practical terms, this property ensures that no train remains stuck in-
definitely in the ”approach” state after initiating the approach action. It
guarantees that each train will successfully complete its crossing of the
bridge if it begins the approach process.

This is perhaps the most interesting result in this use case, as it is a very good
explanation of the intuition behind the query.

4.2 Use Case (SMT): Pigeonhole

In the SMT-LIB, a set of benchmarks for SMT-solvers [2], there is formalization
of a variant of the pigeonhole principle. The principle states that ”if n items are
placed in m containers and n > m, then there must be at least two items in
one container”. The benchmark4 formulates the question ”in a grid with 11 rows
and 10 columns, if there is at least one pigeon in each row, can there be at most
one pigeon in each column” (which is impossible). We ask ChatGPT to explain
the intuition of the formula: Can you explain the intuition behind the following
SMT formula: , followed by the SMT instance (∼ 350 lines):

4 QF_LIA/pidgeons/pigeon-hole-10.smt2
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In summary, this SMT formula appears to describe a grid of

binary variables with constraints that require at least one

variable to be set to 1 in each row and at most one variable

to be set to 1 in each column. The goal is to determine if

there exists a valid assignment of these binary variables that

satisfies these conditions.

Interestingly, when querying about the satisfiability (Do you think it is sat-
isfiable? ), ChatGPT provides a correct reasoning, with only the grid size being
wrong (unfortunately, that mistake makes the whole reasoning confusing and
faulty):

Based on the constraints provided in the SMT formula, it

appears that the formula is unsatisfiable. The reason is that

the formula imposes two conflicting constraints on each row

and column:

1. In each row, it requires that the sum of the values of the

variables in that row must be greater than or equal to 1,

which means at least one variable in each row must be set to

1.

2. In each column, it requires that the sum of the values of

the variables in that column must be less than or equal to 1,

which means at most one variable in each column can be set to

1.

These two sets of constraints conflict with each other. It is

not possible to satisfy both conditions simultaneously for all

rows and columns in an 11x11 grid because if you set at least

one variable to 1 in each row, it will necessarily set more

than one variable to 1 in some columns (violating the column

constraints), and if you set at most one variable to 1 in each

column, it will result in some rows having all variables set

to 0 (violating the row constraints).

Therefore, the SMT formula is expected to return unsat,

indicating that there is no valid assignment of values to the

variables that simultaneously satisfies all the constraints.

4.3 Use Case (Coq): Direct Proof

Finally, in our study of explanation of formal models, we look at ChatGPTs
capability of explaining the intuition behind a proof. Coq [?] is an interactive
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theorem prover, where the user can write proofs which are checked by Coq to en-
sure their correctness. We give a quite simple proof, showing that negation is in-
volutive: Lemma negb_involutive : forall b:bool, negb (negb b) = b.5.
While the proof is simple, for a person with no experience with Coq notation can
be a bit bothersome to read. We ask ChatGPT to provide an explanation (Can
you explain the following proof using standard mathematical notation:), which
after a follow-up prompt A bit shorter please. yields:

Theorem: For all Boolean values b, negb(negb(b)) = b.

Proof:

Introduction (intros): Assume an arbitrary Boolean value b.

Case Analysis (destruct):

When b is true, we have negb(negb(true)) = true.

When b is false, we have negb(negb(false)) = false.

In both cases, the equation holds, demonstrating that negb(

negb(b)) is equal to b. Therefore, the theorem is proven.

And this final output provides something which is quite easy to understand
quickly, without any of the syntax remaining.

5 Conclusions

We have proposed three research questions regarding investigation of the capa-
bilities of ChatGPT to explain formal models. In three use case studies we have
begun identifying some interesting directions for further study. The results are
very preliminary but promising, showing that it can indeed be the case that
ChatGPT is useful for non-experts to interpret formal models.

5.1 Future Work

The next steps are both in investigating the first research question more thor-
oughly and in a more systematic manner. This will be done by investigating
multiple models and compare results and try to identify strength and weak-
nesses of ChatGPT. The second research questions, concerned how ChatGPT
can assists in development of models, will be studied by asking for extensions
and modifications of the different models. Finally, the third research question
will be investigated by defining syntactical transformations (which are semanti-
cal equivalent) and see how the explanations differ. A tough part component of
all these questions is to handle the non-determinism of ChatGPT in a suitable

5 This is the description of the Lemma, the proof can be found as an standard example
of Coq
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way, as well as the learning component of the LLM (i.e., if we ask about the same
model multiple times, ChatGPT could learn from this interaction thus becoming
more apt in understanding the model).
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