AT Assisted Programming
(AISoLA 2023 Track Introduction)

Wolfgang Ahrendt! and Klaus Havelund?*

1 Chalmers University of Technology, SE
ahrendt@chalmers.se
2 NASA Jet Propulsion Laboratory, California Inst. of Technology, US
klaus.havelund@jpl.nasa.gov

Abstract. The paper is an introduction to the track ‘Al Assisted Pro-
gramming’, organized at the AISoLA conference during the period Oc-
tober 23-28, 2023. The theme of AISoLA 2023 is: ‘Bridging the Gap Be-
tween Al and Reality’. The motivation behind the track is the emerging
use of Large Language Models for construction and analysis of software
artifacts. An overview of the track presentations is provided.

1 Introduction

Neural program synthesis, using Large Language Models (LLMs) which are
trained on open source code, are quickly becoming a popular addition to the
software developer’s toolbox. Services like, for instance, OpenAl’s ChatGPT [§],
Google’s Bard [6], and GitHub’s Copilot [5] can generate code in many different
programming languages from natural language requirements. This opens up for
fascinating new perspectives, such as increased productivity and accessibility of
programming also for non-experts. However, neural systems do not come with
guarantees of producing correct, safe, or secure code. They produce the most
probable output, based on the training data, and there are countless examples
of coherent but erroneous results. Even alert users fall victim to automation bias:
the well studied tendency of humans to be over-reliant on computer generated
suggestions. The area of software development is no exception to this automation
bias.

The track AI Assisted Programming at AISoLA 2023 is devoted to discus-
sions and exchange of ideas on questions like: What are the capabilities of this
technology when it comes to software development? What are the limitations?
What are the challenges and research areas that need to be addressed?” How can
we facilitate the rising power of code co-piloting while achieving a high level of
correctness, safety, and security? What does the future look like? How should
these developments impact future approaches and technologies in software devel-
opment and quality assurance? What is the role of models, tests, specification,

* The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



2 Wolfgang Ahrendt and Klaus Havelund

verification, and documentation in conjunction with code co-piloting? Can qual-
ity assurance methods and technologies themselves profit from the new power of
LLMs?

2 Contributions

These questions are taken up by the participants of the track in 10 talks. Three
talks [2I3/4] were associated with regular papers, one talk [7] was associated with
an extended abstract, and one talk [I] with a one page abstract. The remaining
five talks do not have associated papers in the proceedings. Presenters have been
offered to publish regular papers in a subsequent post-conference proceedings.

2.1 Talks with Papers in the Proceedings

Lenz Belzner, Thomas Gabor, and Martin Wirsing [2] (Large Language Model
Assisted Software Engineering: Prospects, Challenges, and a Case Study) discuss
the potential benefits and challenges associated with the adoption of LLMs in
software engineering. They explore the opportunities for requirements engineer-
ing, system design, code generation, test generation, code reviews, and software
processes. The paper includes a comprehensive review of the state-of-the-art of
the use of LLMs for software development. A case study is presented, illustrating
the prompt-based development of a simple “search and rescue” application.

Daniel Busch, Gerrit Nolte, Alexander Bainczyk, and Bernhard Steffen [3]
(ChatGPT in the Loop: A Natural Language Extension for Domain-Specific Mod-
eling Languages) present an approach that combines the use of Domain-Specific
Languages (DSLs) and natural language prompting using LLMs. The user pro-
vides first a context in the form of a DSL model, creating a frame in which Chat-
GPT can generate code that fits the code skeleton generated from the model.
The resulting code is verified using automata learning and subsequent model
checking. The ideas are demonstrated with the development of a classical river
crossing game.

Itay Cohen and Doron Peled [ (Integrating Distributed Component-Based
Systems through Deep Reinforcement Learning) present the idea of using deep
reinforcement learning to learn how concurrently executing components can
communicate in a more optimal way, in order to avoid failed communication
attempts, where one components attempts to communicate with another com-
ponent, which, however, is not willing to communicate at that moment. The
components are considered “black boxes”, where their internal structure is not
known, and the learning is performed in a distributed manner.

Moa Johansson [7] (What can Large Language Models do for Theorem Prov-
ing and Formal Methods? - extended abstract) investigates how to best combine
the capabilities of LLMs with symbolic verification systems such as theorem
provers. LLMs are noted to be unreliable and prone to hallucinate, also in math-
ematical reasoning. It is suggested that a more reliable way is to let the LLM
provide inputs, specifically invent lemmas and conjectures, to a theorem prover,



Al Assisted Programming 3

which can then do the formal reasoning. In a case study it is explored how GPT-4
performs on lemma discovery for the Isabelle/HOL proof assistant.

Bernhard K. Aichernig and Klaus Havelund [1] (AI-Assisted Programming
with Test-based Refinement - abstract) explore the idea of program develop-
ment in Scala by refinement using ChatGPT. The authors refine a classic bridge
controller, originally used as an example illustrating Event-B, through several
steps, each generated by ChatGPT from natural language prompts. The refine-
ments are tested using refinement mappings and property-oriented testing with
ScalaCheck. This in contrast to the Event-B effort, which proves the refinements
correct.

2.2 Talks without Papers in the Proceedings

Wolfgang Ahrendt, Dilian Gurov, Moa Johansson, and Philipp Rimmer (7riCo
- LLM supported Development of Robust Software) suggest an agile software de-
velopment workflow which addresses the commonly seen lack of trust in code
generated by LLMs. The proposed approach, named TriCo (Triple Co-piloting),
integrates in an IDE a LLM with formal methods, automated testing, and ma-
chine learning. A change in one of these three artifacts, will cause the IDE to
suggest changes to the other two artifacts, keeping them consistent.

Saddek Bensalem, Kaiwen Cai, Yi Dong, Andre Freitas, Wei Huang, Xi-
aoweil Huang, Gaojie Jin, Ronghui Mu, Mustafa A. Mustafa Yi Qi, Wenjie Ruan,
Changshun WU, Dengyu Wu, Sihao Wu, Peipei Xu, Yanghao Zhang, and Xingyu
Zhao (A Survey of Safety and Trustworthiness of Large Language Models through
the Lens of Verification and Validation) present a survey exploring the safety
and trustworthiness of LLMs. The authors review and categorize known vulner-
abilities of LLMs. They then investigate if and how verification and validation
techniques developed for traditional software and deep learning models can be
integrated during the life-cycle of LLMs to make them safer and more trustwor-
thy.

Dirk Beyer (Software Verification in the Presence of Generated Programs)
discusses the problem of formally verifying that a program generated by a LLM
satisfies a formal specification. In order to prove this, it is commonly necessary
to formulate and prove program invariants. The talk focuses on automatic con-
struction of such invariants as first-class interchangeable objects, not just code
annotations, and their automatic verification. It is also discussed how to produce
comprehensible error reports when a specification is violated.

Dan Boneh, Deepak Kumar, Neil Perry, and Megha Srivastava (Do users
write more insecure code with AT assistants?) conduct a study examining how
users interact with an AT Code assistant to solve a variety of security related tasks
across different programming languages. The authors observe that the uncritical
use of an Al code assistant generally results in less secure code. Additionally,
users with access to an Al assistant seem more likely to believe they write secure
code. The authors perform an analysis of the users’ language and interaction
behaviours, and release an interface to conduct similar studies in the future.



4 Wolfgang Ahrendt and Klaus Havelund

Martin Leucker and Gerardo Schneider (Some Experiments in Chatbot-Assisted
Program Development) report on experiments with ChatGPT. In particular, the
authors explore the use of ChatGPT to generate simple programs, point out
deficiencies in programs, generate test cases, generate temporal logic formulae,
and deal with automata specifications. Furthermore it is shown how to build a
simple chatbot that can run dedicated analysis tools, such as a model checker,
locally, as a step towards full-scale chatbot-assisted program development.

3 Conclusion

The presentations in this track cover the use of LLMs in the context of all
phases of software development, including requirements, designs, coding, testing
and verification. This includes their use in combination with specification lan-
guages and domain-specific languages. It is explored how LLMs can be used to
support formal methods and testing, and in the other direction it is explored
how these techniques can support the use of LLMs, both wrt. safety, security,
and correctness of software. Other machine learning topics are covered as well.
Some case studies are furthermore presented. This covers an already interesting
spectrum of AT assisted programming at this very early stage of LLMs. We hope
that this track, with its talks, discussions, and papers, contributes to a future of
AT assisted programming which exploits the strengths of arising AI technologies
while mitigating the corresponding risks. We are convinced that many commu-
nities within computing have a lot to contribute to such a development, and look
forward to future initiatives and contributions towards this aim.

References

1. B. K. Aichernig and K. Havelund. Al-assisted programming with test-based refine-
ment. In Proc. of AISoLA 2023 - Bridging the Gap Between Al and Reality. Track:
Al Assisted Programming, LNCS. Springer International Publishing, 2023. [in this
volume].

2. L. Belzner, T. Gabor, and M. Wirsing. Large language model assisted software
engineering: Prospects, challenges, and a case study. In Proc. of AISoLA 2023 -
Bridging the Gap Between AI and Reality. Track: AI Assisted Programming, LNCS.
Springer International Publishing, 2023. [in this volume].

3. D. Busch, G. Nolte, A. Bainczyk, and B. Steffen. ChatGPT in the loop: A natural
language extension for domain-specific modeling languages. In Proc. of AISoLA
2023 - Bridging the Gap Between AI and Reality. Track: AI Assisted Programming,
LNCS. Springer International Publishing, 2023. [in this volume].

4. 1. Cohen and D. Peled. Integrating distributed component-based systems through
deep reinforcement learning. In Proc. of AISoLA 2023 - Bridging the Gap Between
AI and Reality. Track: Al Assisted Programming, LNCS. Springer International
Publishing, 2023. [in this volume].

5. GitHub. Copilot. https://copilot.github.com, 2023. Accessed: August 27, 2023.

6. Google. Bard. https://bard.google.com) 2023. Accessed: August 27, 2023.


https://copilot.github.com
https://bard.google.com

Al Assisted Programming 5

7. M. Johansson. What can large language models do for theorem proving and formal
methods? In Proc. of AISoLA 2023 - Bridging the Gap Between Al and Reality.
Track: AI Assisted Programming, LNCS. Springer International Publishing, 2023.
[in this volume].

8. OpenAl. ChatGPT. |https://chat.openai.com, 2023. Accessed: August 27, 2023.


https://chat.openai.com

	AI Assisted Programming

