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Abstract. Safety, resilience and performance are crucial properties in
intelligent hybrid systems, in particular if they are used in critical infras-
tructures or safety-critical systems. In this paper, we present a case study
that illustrates how to construct provably safe and resilient systems that
still achieve certain performance levels with a statistical guarantee in the
industrially widely used modeling language Simulink. The key ideas of
our paper are threefold: First, we show how to model failures and repairs
in Simulink. Second, we use hybrid contracts to non-deterministically
overapproximate the failure and repair model and to deductively verify
safety properties in the presence of worst-case behavior. Third, we show
how to learn optimal decisions using statistical model checking (SMC-
based learning), which uses the results from deductive verification as a
shield to ensure that only safe actions are chosen. We take component
failures into account and learn a schedule that is optimized for perfor-
mance and ensures resilience in a given Simulink model.

Keywords: Hybrid Systems · Resilience · Reinforcement Learning · For-
mal Verification · Statistical Model Checking

1 Introduction

The demands on the functionality and flexibility of cyber-physical systems are
steadily increasing. At the same time, they are increasingly used in critical infras-
tructures, for example, controlling energy or water supply, and in safety-critical
systems such as self-driving cars. Model-driven development frameworks such
as MATLAB Simulink help to conquer the complexity and have gained increas-
ing acceptance in industry. Simulink also provides extensions and toolboxes for
learning. Learning enables the hybrid systems that are modeled in Simulink to
adapt to dynamic changes in the environment, and thus significantly increases
their flexibility. To ensure that such intelligent hybrid systems remain opera-
tional even in unexpected situations and under external disruptions is a major
challenge. Existing approaches for the verification of hybrid systems either focus
on the rigorous verification of safety guarantees [6,18,1], or employ probabilistic
techniques to optimize the probability that a stochastic hybrid system satisfies
a temporal logic formula [38,40,44]. While the former often involves worst-case
considerations that impede the performance, the latter does not yield guarantees
for all possible behaviors.
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To overcome this problem, we have recently proposed a novel approach to
combine deductive formal verification and quantitative analysis for intelligent
hybrid systems, which takes uncertainties and learning into account [2]. However,
our previous approach used a variety of heterogeneous formalisms and tools.

In this paper, we present a case study to construct provably safe and resilient
systems that optimize the probability that performance properties are satisfied
using shielded SMC-based learning in Simulink. Our work is based on three key
ideas: First, we provide a way to model stochastic failure and repair times in
Simulink using Simulink random and memory blocks to model variable delays
and a decision logic to model component failures and repairs. Second, to en-
able deductive verification of a given Simulink model with stochastic extensions,
we encapsulate the failure and repair model in a dedicated subsystem and use
hybrid contracts to define a non-deterministic overapproximation of its behav-
ior. With our previously proposed Simulink2dL [35,3] transformation, we can
automatically transform the Simulink model together with the hybrid contract
into the differential dynamic logic (dL). We use the interactive theorem prover
KeYmaera X [18] to deductively verify safety and resilience properties in the
presence of worst-case behavior on the resulting model. Third, we use SMC-
based learning within Simulink, which can learn a schedule that is optimized for
performance but still ensures resilience in the presence of failures by using the
deductive verification results as a shield on the learning component. We take
component failures into account using our failure and repair model and learn
near-optimal decisions using reinforcement learning.

Compared to our previous work [2], we make the following contributions:

– We model stochastic failure and repair times in Simulink.
– We capture the failure and repair model in a dedicated Simulink subsystem

and use hybrid contracts to define a non-deterministic overapproximation.
– We enable SMC-based learning for Simulink and validate its results with a

recent extension of the statistical model checker HYPEG.

Our case study is a stochastic extension of an intelligent water distribution
system provided by MathWorks [59]. We formally verify safety and resilience on a
dL model that is automatically generated from the Simulink model together with
the hybrid contract of the failure and repair model. We combine the deductive
verification with SMC-based learning, and we provide a near-optimal scheduler
that is guaranteed to be safe and resilient by construction. It maximizes resilience
and the probability that the energy consumption is kept below a given limit. We
validate the results via the statistical model checker HYPEG on a hybrid Petri
net model.

This paper is structured as follows: In Sec. 2 and 3, we introduce preliminaries
and discuss related work. In Sec. 4, we combine deductive verification and SMC-
based learning for our case study. We present experimental results in Sec. 5 and
conclude in Sec. 6.
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2 Background

In this section, we introduce reinforcement learning, Simulink, our deductive
verification approach for Simulink, and statistical model checking.

2.1 Reinforcement Learning (RL)

Reinforcement learning is a class of machine learning methods for learning in
a trial and error approach by interacting with an environment through actions
[55]. The goal of an RL algorithm is to optimize a reward by learning a policy
π(a|s) that determines which actions to take in which states. The mathematical
basis are Markov decision processes (MDPs) [55]. An MDP is a tuple (S,A,R, p),
where S is a set of states, A a set of actions, R ⊂ R a set of rewards, and p a
probability distribution, which describes the MDPs dynamics. In an MDP, an
agent and an environment interact in discrete time steps. At each step t, the
agent chooses an action at ∈ A to apply in the current state st ∈ S. Then the
RL agent receives a new state st+1 ∈ S resulting from the applied action and
a reward rt+1 ∈ R. The probabilities of states s, actions a and rewards r at
times t are given by random variables St, At and Rt. The expected reward r
and next state s′ resulting from the application of a in s can be expressed as the
probability distribution p(s′, r|s, a) =̇ Pr{St = s′, Rt = r|St−1 = s, At−1 = a}.

2.2 Simulink and the RL Toolbox

Simulink [56] is an industrially well established graphical modeling language for
hybrid systems. It comes with a tool suite for simulation and automated code
generation. Simulink models consist of blocks that are connected by discrete or
continuous signals. The Simulink block library provides a large set of predefined
blocks, from arithmetics over control flow blocks to integrators and complex
transformations. Together with the MATLAB library, linear and non-linear dif-
ferential equations can be modeled and simulated. Furthermore, the Simulink
library provides random blocks to sample values from a random distribution.

Fig. 1a shows a hybrid Simulink model of a water tank controlled by an RL
agent. The current water level h is computed by integrating the difference of an
inflow i and demand d over time in a (time-continuous) integrator block. The
water demand d is provided by an input port. The RL Toolbox [57] provides the
RL Agent block, which enables the execution of RL algorithms directly within
Simulink. In this example, the RL Agent controls the inflow i and has to meet the
demand while preventing the tank from going empty. The RL Agent block acts
in fixed sampling steps. In each step, it samples observations and rewards, and
outputs an action chosen by its RL algorithm. Here, the observation corresponds
to the water level h and the action is the chosen inflow i. The reward is calculated
in a user defined Reward subsystem.
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(a) Simulink Model

pre → [{
d := ∗; ?(dmin ≤ d ≤ dmax);
{?(cRL ≥ ts);

cRL := 0; i := ∗; ?(HC);
++
?(c < ts); }
{t′ = 1, h′ = i− d,
c′RL = 1& (cRL ≤ ts)}
}∗] post

(b) From Simulink to Differential Dy-
namic Logic

Fig. 1: Reinforcement Learning, Simulink, and dL

2.3 Differential Dynamic Logic and Simulink2dL

The semantics of Simulink is only informally defined. To enable deductive veri-
fication of Simulink models, we have proposed a fully-automatic transformation
from Simulink into the differential dynamic logic (dL) [50] in [35]. The dL is a
logic for formally specifying and reasoning about properties of hybrid systems,
which are modeled as hybrid programs.

The syntax is as follows: α;β models a sequential composition of two hybrid
programs α and β. α ∪ β (or α ++ β) models a non-deterministic choice. A
non-deterministic loop α∗ executes α zero or more times. The hybrid program
x := e evaluates the term e and assigns it to the variable x. x := ∗ denotes a
non-deterministic assignment. ?Q is a test, which checks whether the formula Q
is fulfilled. Finally, {x′

1 = θ1, x′
2 = θ2, x′

n = θn & Q} is a continuous evolution,
which evolves a set of variables x with a set of differential equations θ. A contin-
uous evolution may progress as long as the evolution domain Q is satisfied. dL
provides two modalities for reasoning about reachable states of hybrid programs.
[α]ϕ states that a formula ϕ holds in every state reachable by α. ⟨α⟩ϕ states that
there exists a state reachable by α in which ϕ holds. Specifications for hybrid
programs are defined as pre → [α]post.

A dL specification can be deductively verified with the interactive theorem
prover KeYmaera X [18]. Deductive reasoning avoids the state space explosion
problem and can also be used for parameterized and infinite-state systems, but
requires high expertise, e.g., for the manual definition of invariants.

For the transformation from Simulink to dL, we have defined dL expressions
that precisely capture the semantics of all Simulink blocks in a given model, con-
nect them according to the signal lines, and expand control conditions such that
assignments and evaluations are only performed if the control conditions are sat-
isfied [35]. To enable compositional verification, we have introduced the concept
of hybrid contracts for Simulink [36] and we have extended this concept to RL
components in [3]. A hybrid contract is a tuple hc = (ϕin, ϕout) that specifies
assumptions on the inputs and guarantees on the outputs of a given Simulink
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subsystem or RL agent. Contracts replace subsystems and agents during trans-
formation, which enables us to abstract from their inner workings. Simulink sub-
systems can be individually verified to ensure that they fulfill their contracts.
For RL agents we use runtime monitoring to ensure that the contract holds. The
dL model in Figure 1b corresponds to the simple Simulink water tank in Fig. 1a.
The input d is modeled by a non-deterministic assignment constrained to the
range [dmin, dmax]. The integrator block is captured by a continuous evolution.
The water level h evolves with h′ = i− d, the difference of current inflow i and
demand d. The RL agent is captured by a discrete assignment and a continuous
evolution. The discrete assignment selects a safe action according to the hybrid
contract HC whenever the RL agent’s sample time elapses. The clock variable
cRL is evolved in the continuous evolution and cRL ≤ ts is added to the evolution
domain to ensure that no sampling steps are missed. The global simulation loop
is modeled by a nondeterministic repetition.

2.4 Statistical Model Checking and Encoding of Properties

Statistical model checking is used to estimate the probability that a simulation
run fulfills a linear-time property Ψ defined in signal temporal logic (STL) [40]
over the state of a hybrid model. Whether a property specified in STL at time
t is satisfied in a simulation of the stochastic hybrid model can be decided by a
model checker which monitors the state evolution. The context-free grammar

Ψ ::= tt | AP | ¬Ψ | Ψ ∧ Ψ | Ψ U [t1,t2] Ψ

constructs a signal temporal logic property Ψ . It consists of true (tt) and con-
tinuous atomic properties (AP ) comparing a function f : S → R with the value
zero: f(Γ ) > 0. They can be combined with a logical and or with a time-bounded
until -operator and negated. STL as in [40] only supports continuous signals, i.e.
continuous variables in our context. By mapping discrete modes to continuous
signals, they can be included as well. We refer to our own previous work [49] for
the semantics of STL in the context of hybrid Petri nets with general transitions
(HPnG).

In the following, let Xi ∼ Bernoulli(p) be a random variable and let x1, ..., xn

be realizations of Xi for n simulation runs with 1 ≤ i ≤ n, so that Xi = 1 if a
property Ψ holds for the i-th simulation run. We denote by r the number of runs
for which Xi = 1 (i.e., Ψ is fulfilled). Thus, the arithmetic mean of x1, ..., xn is
x̄ = r

n .
The desired level of confidence denotes as λ ∈ [0, 1], so that the confidence

interval covers in (100 · (1− λ))% of the times the real probability.
In [47], the calculation of different types of confidence intervals (CI) for statis-

tical model checking of HPnGs is discussed. Since we are considering a Bernoulli
random variable, we are able to use interval estimation approaches for binomial
proportions, as presented by Agresti and Coull in [4].

This paper uses the Score Confidence interval [61], which is well suited for
small n and Bernoulli random variables. In the following, zc denotes the c quan-
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tile of the standard normal distribution. The Score CI is then determined by

CIScore =

 x̄+
z2
(1−λ/2)

2n −A

(1 +
z2
(1−λ/2)

n )
;
x̄+

z2
(1−λ/2)

2n +A

(1 +
z2
(1−λ/2)

n )

 , (1)

with

A = z(1−λ
2 )

√
x̄(1− x̄) +

z
(1−λ

2
)

4n

n
, (2)

where the lower bound of CIScore is zero for r = 0 and the upper bound is one
for r = n.

3 Related Work

There has been some work on failure and repair modeling in Simulink. For ex-
ample, in [20,21], the authors propose a failure analysis for Simulink using prob-
abilistic model checking with Prism [32]. However, the proposed Simulink model
consists of purely abstract components, annotated with failure probabilities at
each subsystem. Similarly, the authors of [41] present a Simulink library that
integrates Monte Carlo and fault tree methodologies. While specialized blocks
are provided for fault tree modeling (e.g., and, or, basic events), the behavior
of the underlying hybrid system is not considered. In [53], the authors propose
ErrorSim, a tool for simulative error propagation analysis of Simulink models.
They provide an external tool that enables the user to annotate fault injection
types together with failure probabilities, and then use MATLAB callback func-
tions to perform error simulation. With that, they enable the user to perform
fault tree analysis and failure mode and effects analysis. However, failure and
repair modeling is not supported directly within Simulink, and temporal logics
properties cannot be analyzed. In several works, for example [60,39,29], the per-
formance of a given deterministic Simulink model has been evaluated. However,
in these works, the performance evaluation is carried out via a single simula-
tion run for different parameter settings, and not with a statistical analysis or
learning. Furthermore, the systems have not been formally verified.

There have been quite some efforts to enable the formal verification of systems
that are modeled in Simulink. However, many of them, e.g. [7,28,51], including
the Simulink Design Verifier [58], are limited to discrete subsets of Simulink.
Formal verification methods that support hybrid systems modeled in Simulink
are, e.g., proposed in [13,42,62,12]. However, none of these methods enables
a systematic abstraction of failure and repair times, and, to the best of our
knowledge, none of them enables the verification of intelligent hybrid Simulink
models with RL components.

There also exist several approaches where formal methods are used to ensure
the safety of reinforcement learning. In [5], the use of a shield is proposed, which
substitutes unsafe for safe actions and is synthesized from a safety automaton and
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an abstraction of the environment. This idea has attracted quite some interest. A
survey on shield synthesis for reinforcement learning is given in [31]. Recent work
[11] applies reach-avoid shields to partially observable MDPs. In [19], the safety
of an RL controller is ensured via verified runtime monitors based on a differential
dynamic logic model, and we have adopted this approach for Simulink in [3,1].
However in all of these approaches, the resulting knowledge about safe actions
is not used in quantitative analyses, i.e., obtaining an optimized probability for
meeting an additional property while only choosing guaranteedly safe actions is
not considered.

There has been a number of works on statistical model checking (SMC) for
Simulink. For example, in [63], the authors present an SMC approach based on
Bayesian statistics and show that it is feasible for hybrid systems with stochastic
transitions, a generalization of Simulink/Stateflow models. To model failures,
they randomly introduce faults into a given Simulink model. In [34], the au-
thors propose an extension of the statistical model-checker Plasma Lab [8] for
Simulink. They use custom C-code blocks that generate independent sequences
of random draws to model failure probabilities and check bounded linear tem-
poral logic properties over sequences of states and time stamps. However, they
neither consider failure and repair times nor learning. In [17], the authors pro-
pose a transformation from Simulink into stochastic timed automata (STA) and
perform statistical model checking with UPPAAL SMC on the resulting network
of STA. However, they do not consider random generation blocks and transform
a given Simulink model into a deterministic STA model where all probabili-
ties are one, so they can neither take failure probabilities nor repair times into
consideration.

Statistical model checking has been proposed for different kinds of (hybrid)
stochastic systems. For hybrid Petri nets, statistical model checking has been
proposed for linear evolutions in [48,47] and for non-linear evolutions in [45].
While the Modest Toolset’s [24] models simulator [9] supports stochastic hybrid
models with linear dynamics as well as lightweight scheduler sampling [33] to
approximate optimal schedulers, it provides the latter only for non-hybrid mod-
els [14,15]. While Simulink is able to capture a wide class of model instances,
more restricted and formal models like MDPs have been considered to improve
performance and safety with reinforcement learning (e.g. [26]), as well as to deal
with unknown stochastic behavior [25,10], and with linear-time logic specifica-
tions (e.g. [10,52,23]).

Learning for stochastic hybrid systems is considered, e.g. in a variant of
ProbReach, which applies the cross-entropy method for resolving nondetermin-
ism [54]. Also [16] enriches an SMT-based approach with decision trees and AI
planning algorithms to handle nondeterminism. Using reinforcement learning in
Stochastic Hybrid Models to resolve nondeterminism in an optimal way has been
proposed in [44] for Discrete Event Systems (DES) and applied to optimize (dis-
)charging of a smart home in [46]. To handle the underlying uncountable state
space, a discretization of the continuous variables is used and the optimality of
the approach is proven for a decreasing discretization distance.
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Fig. 2: Deductive Verification and Shielded SMC-based Learning for Simulink

Finally, there has been some work on combining rigorous formal and statis-
tical methods. In [30], the authors incorporate statistical hypothesis testing to
compute promising configurations of program verifiers automatically. However,
they do not support hybrid systems, and they do not consider both safety and
performance properties. In [22], the authors present a formal framework for an
integrated qualitative and quantitative model-based safety analysis. This ap-
proach is more closely related to our work and also exploits the idea to combine
the best out of both worlds from formal verification and quantitative analysis.
However, they again do not support hybrid systems, do not consider deductive
verification methods and also not the integration of learning components.

4 Shielded SMC-based Learning in Simulink

In this paper, we combine deductive formal verification with SMC-based learn-
ing to ensure safety and resilience of intelligent hybrid systems that are mod-
eled in Simulink. In this section, we first apply shielded SMC-based learning in
Section 4.1, before Section 4.2 recaps the intelligent water distribution system
[59] also used in [2]. We present our stochastic extension of the given Simulink
model with a failure and repair model in Section 4.3. Our approach for a non-
deterministic over-approximation of the failure and repair model and its integra-
tion into our Simulink to dL transformation is presented in Section 4.4. Finally,
we present our approach to extend the Simulink model with a performance anal-
ysis subsystem and to use this for SMC-based learning that optimizes a given
STL property in Section 4.5.

4.1 Approach

Our overall approach is shown in Figure 2. Our goal is to to construct prov-
ably safe and resilient systems that still achieve certain performance levels in
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Simulink. To achieve this, we propose to first enrich a given intelligent hybrid
Simulink model, which may include an RL agent together with a reward sub-
system for learning, with a stochastic failure and repair model. To provide this
stochastic extension of a given Simulink model, we use Simulink random blocks
to sample from stochastic distributions, for example, the time to the next failure
of a component or its repair time.

To provide formal guarantees for the safe and resilient behavior of the given
intelligent hybrid system with the stochastic extension, we extend our previously
proposed transformation from Simulink to dL [35,37] with a failure and repair
contract, as shown in the upper part of Figure 2. The failure and repair contract
provides a non-deterministic over-approximation of the possible failures and thus
enables us to verify that the system meets critical safety or resilience proper-
ties under worst-case considerations. As proposed in [3], we also use a hybrid
contract to abstract from the RL agent. Then, we use the formal dL represen-
tation together with desired safety and resilience properties as an input to the
interactive theorem prover KeYmaera X. Using KeYmaera X, we deductively
verify that the overall system satisfies the given properties for an unbounded
time and potentially even for a system model with unbounded parameters. The
verified safety and resilience properties are formally guaranteed to hold under
two assumptions: First, we assume that the failure and repair contract actually
provides a safe over-approximation of the failures and repairs at runtime. Sec-
ond, we assume that the RL agent adheres to the hybrid contract at runtime. To
enforce the latter, we generate runtime monitors, which can be used to ensure
that the RL agent may only choose safe actions. To combine our deductive ver-
ification approach with SMC-based learning, we use the safe actions defined by
the generated runtime monitor as a shield for the RL agent in the second part
of our approach shown in the lower part of Figure 2.

The aim of SMC-based learning is to provide a near-optimal scheduler, which
maximizes or minimizes the probability that given resilience or performance
properties are satisfied. To enable SMC-based learning directly on a given in-
telligent hybrid Simulink model, we extend it with a performability subsystem.
The performability subsystem encodes the resilience and performance proper-
ties, which are given as STL formulas, in Simulink. This enables us to use the
formally defined properties for reward shaping, and to combine reinforcement
learning and SMC to compute a policy that optimizes the probability that the
given STL formula is satisfied as proposed in [44]. As proposed in [2], we restrict
the RL agent to safe actions to ensure that the resulting policy is correct by con-
struction with respect to the (deductively) verified safety properties. With that,
we compute an optimized probability that quantitative resilience properties (e.g.
provide full service whenever possible) or performance properties (e.g. the energy
consumption of the pump is never above a certain limit) are satisfied, while we
still ensure that critical safety properties (e.g. the tank never runs empty) and
qualitative resilience properties (e.g. always provide at least degraded service)
are never violated.
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Fig. 3: Intelligent WDS inspired by [59]

4.2 Intelligent Water Distribution System in Simulink

The upper part of Figure 3 depicts the Simulink model of our intelligent wa-
ter distribution system (WDS) inspired by [59]. The model uses an RL Agent to
satisfy a water demand by consumers as best as possible, while being energy effi-
cient. The system consists of three pumps, namely (p1, p2, p3), pi ∈ {0, 1}, which
are used to constantly pump fluid from a reservoir into a water tank. The RL
Agent receives observations of the current state and a reward signal. It decides
on the pump activations (a1, a2, a3), ai ∈ {0, 1} and a chosen maximum supply
as ∈ R+, in discrete sampling steps. The stepsize is defined by a parameter
tS ∈ R+. The current inflow and demand are calculated by a Flow Computation
subsystem. The inflow i ∈ R+ is determined by the number of pumps that are
currently running. The demand d ∈ R+ is limited by the maximum possible
supply as. The difference of inflow i and demand d is continuously integrated
to calculate the current water height h ∈ R+. Pumps that are running require
energy and thus are associated with cost. The energy consumption cost ′ ∈ R+

is integrated over time to keep track of the total energy consumption cost ∈ R+.
The Pump Failure and Repair and Performability subsystems are extensions we
use for failure and repair modeling and SMC-based learning and are described
in the following subsections.

The major safety requirements of the intelligent WDS is that the water tank
should never run empty. To ensure that a minimum supply of water is always
available, the system features a backup pump (p4), which turns on as soon as
the water level falls below a backup level hb. For resilience, the system should
always provide at least a degraded service, and full service whenever possible.
Note that this definition of resilience comprises a qualitative part (always at
least degraded service) and a quantitative part (full service whenever possible).
As a performance requirement, the energy consumption should never exceed a
given maximum.
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4.3 Stochastic Extensions for Modeling Pump Failures and Repairs

To systematically model stochastic pump failures as well as repair times, we
extended our Simulink model from [2] with a failure and repair model for pumps.
Note that the failure and repair probabilities in [2] only apply to the hybrid
Petri net model used in HYPEG and are not explicitly modeled in Simulink. Fig.
4 shows the contents of a Pump Failure and Repair subsystem. The core of this
system is a Simulink If Block, which controls the execution of two subsystems.
If the pump is currently not broken (p1 == 1) and turned on by the agent
(a1 == 1) the Pump Running Subsystem is executed. If the pump is currently
broken (p1 == 0), the Pump Broken subsystem is executed. The output of both
systems determines the current state of the pump. However, only one system can
be activated at once. The merge block combines the output of both conditional
systems into a single continuous signal. If none of the systems are currently
executed, the previous signal is held.

The Pump Running system is shown in Fig. 5. The system models the behav-
ior of a currently running pump, subject to stochastic failures. The state of the
pump is forwarded to the output. Simulink provides blocks for sampling from
different random distributions like gaussian and uniform distributions. Addi-
tional random distributions can be implemented using MATLAB functions. We
use these blocks to sample delays for failures and repairs. The subsystem Failure
Delay Sampler in Pump Running uses a random number block which samples
from a Gaussian distributed random signal with configurable mean, variance and
random seed. A new seed is randomly set in each simulation run. The sampled
delay is forwarded through an Abs block to model a folded normal distribution.

The sampled delay is stored in the Variable Transport Delay block. Initially,
the state of the variable transport delay and thus the state of the output is 1
(the pump is working). As soon as the Failure Delay has elapsed, the variable
transport delay block outputs the value 0 and the pump state (p1) switches
to broken. Note that the delay time only elapses if the subsystem is enabled,
i.e. if the pump is working and activated by the RL Agent. In the overall Pump
Failure and Repair subsystem (Fig. 4), this leads to a change in the If-Else blocks
conditions. Thus, Pump Running is disabled and Pump Broken is enabled. The
Pump Broken subsystem works analogously to the Pump Running subsystem.
It outputs p1 == 0 until its repair time is reached. Then p1 is set to 1, Pump
Broken is disabled and Pump Running is enabled again. Contrary to the Pump
Running subsystem, the random delay is sampled from a uniform distribution
with configurable min and max values and random seed. Note that Pump Broken
and Pump Running reset to their initial state as soon as their respective delay
time has elapsed. Each time a switch in pump state and thus between the two
subsystems occurs, the now enabled subsystem is reset to its initial state and a
new random number for the respective failure or repair delay is drawn.

4.4 Formal Verification of Safety and Resilience Contracts

To ensure safety and the qualitative part of resilience of the water distribution
system, we apply our approach proposed in [3,37]. To this end, we transform
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Fig. 4: Failure Repair Subsystem of a Pump

Fig. 5: Pump Running Subsystem

the Simulink model into dL [35]. Then, we capture the worst case behavior of
the failure and repair model as well as the safe behavior of the RL agent with
hybrid contracts in dL, and verify the model under the assumption that the
failure and repair contract provides a safe overapproximation and that the RL
agent complies with its contract [3] deductively in KeYmaera X. This ensures a
safe and resilient design by construction. For brevity, we omit the full dL model,
the interested reader is referred to [2]. Our Simulink2dL transformation tool and
all proofs can be found online1.

The contracts for the RL agent, which we have also presented in [2], are
shown in Table 1. The safety contract ensures that the maximum water supply
is always limited to a value (as) that can be satisfied by the current water level
(h) without falling below hmin until the next decision is made in one sampling
step (tS). In the resilience contract, the first guarantee ensures that the agent
always supplies the full service level as = sfull whenever the water level is above
hfull = sfull · tS + hmin. The second guarantee specifies that the agent supplies
the degraded service level if the water level is too low, i.e., it chooses as = sdeg if
h ≤ hdeg = sdeg ·tS+hmin. Note that these definitions imply that hmin ≤ hdeg ≤
hfull. This degraded service is guaranteed by the backup pump, which turns on
before the tank runs empty. The third guarantee specifies that the agent supplies
intermediate but safe levels between the two boundaries.

1 https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html

https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html
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Fig. 6: Performability Subsystem

In contrast to [2], we take the failure and repair subsystems into account. To
achieve this, we define a contract that overapproximates the worst-case behavior
of the failure and repair model as shown in Table 2. The failure and repair
contract provides a safe overapproximation of the possible outputs of the failure
repair system by assuming that all pumps can fail or be repaired at any point
in time.

We have verified the same properties as in [2], now under the assumption that
both the failure and repair contract and the RL agent contract hold, namely that
the water tank never runs dry, that the system always offers at least degraded
service, and that full service is provided whenever sufficient water is available and
whenever the pumps are available for a sufficiently long time. By using the hybrid
contracts as a shield for SMC-based learning, we ensure that the safety and
resilience guarantees we have proven with KeYmaera X are guaranteed for the
optimized model by construction. Note that our formal dL model uses symbolic
constants for system parameters like sampling time tS , service levels sfull, sdeg
and minimum water height hmin . This means that the properties are proven for
a range of safe system parameters and for every possible input scenario.

4.5 Performability Subsystem and SMC-based learning

To optimize the quantitative part of resilience and performance, we define a
Performability subsystem, which implements a monitor that checks the validity
of predefined properties during every simulation run. This enables us to perform
SMC-based learning by distributing a reward based on the satisfaction of the
property during the training process and computing confidence intervals of the
probability that the property holds during statistical model checking. For the
purpose of this paper, we consider resilience and performance properties similar
to [2] as follows: For resilience, we aim to minimize the probability that a water
level is reached that is not sufficient for full service (h ≤ hfull ∈ R+) within the
maximum simulation time tmax ∈ R+. This corresponds to the STL formula Φr

in Table 3.
Performance in terms of energy consumption is expressed as Ψ = (h ≤ hfull)∨

(cost > c) , where c ∈ R+ forms an upper bound for the incurred energy cost.
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Table 1: RL Agent Contracts
Safety Contract Resilience Contract

Assumption Guarantee Assumption Guarantee

true h− as · tS > hmin h > hfull as = sfull
h ≤ hdeg as = sdeg
h > hdeg ∧ h ≤ hfull h− as · tS > hmin

Table 2: Failure and Repair Contract
Assumption Guarantee

true (p1 = 0 ∨ p1 = 1) ∧ (p2 = 0 ∨ p2 = 1) ∧ (p3 = 0 ∨ p3 = 1)

We minimize the probability that Ψ holds, which intuitively means that states
are avoided, where either no full service is delivered or the maximum energy
consumption is exceeded. Together with the reachability, the corresponding STL
formula is Φp in Table 3.

The Performability subsystem of the Simulink model is shown in Figure 6.
The subsystem receives information relevant for the resilience and performance
properties as input. In our model the information received are the current water
level h and the accumulated energy cost in the current run. The Performabil-
ity subsystem consists of the following groups of blocks: The left two blocks
(depicted in green) represent the propositional part of the resilience and perfor-
mance properties. The max blocks (blue) in the right part of the model then
encode the reachability for the respective properties. The max blocks take the
maximum of the boolean input signals over time and hence, keep returning true,
as soon as the desired propositional property is reached once. The reachability
values are used in the Reward subsystem (cf. Figure 3) for training the agent,
i.e. we distribute a reward based on the satisfaction of the property. The reach-
ability values are written back to the MATLAB workspace for statistical model
checking after training.

Summarizing, the safety and resilience contracts, which are used for shielding,
ensure that the water level stays safe and that full service is always provided
if the water level is actually sufficient. The SMC-based learning optimizes the
probabilities that a sufficient amount of water for full service is available and
that the energy consumption stays below a given maximum.

5 Evaluation of results and validation

This section presents and discusses the results obtained by SMC-based learning,
when using safety and resilience contracts from Table 1 as a shield. Previous
work [2] has shown the efficiency of using safety contracts as a shield when
simulating optimal system properties. For validation the statistical simulation
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Table 3: Minimizing STL properties for resilience and performance similar to [2].
resilience Φr = tt U [0.0,tmax ](h ≤ hfull)

performance Φp = tt U [0.0,tmax ](h ≤ hfull ∨ cost > c)

Table 4: Fail and repair distributions for the three pumps.
pump fail: folded normal repair: uniform

µ σ a b

p1 30 6 7 10
p2 20 4 3 5
p3 5 1 1 2

tool HYPEG [47] is used with its recent extension to Q-learning, called HYPEG
ML [44] which simulates a hybrid Petri-net model of the water tank.

Section 5.1 provides parameters for the model proposed in Section 4 and the
settings for SMC-based learning in Section 5.2. Quantitative results for resilience
and performance are presented in Section 5.3 and Section 5.4, respectively.

5.1 Model Parameters

The intelligent water distribution system modeled in Simulink, as illustrated in
Figure 3, initially has a water level of 5.5m and is filled by each active pump
with 0.15m per hour. Each pump consumes energy when active which results in
cost of 0.1 for p1, p2 and p3 and cost of 0.15 for p4. The RL agent can choose from
the action set A = {(a1, a2, a3) | ai ∈ {0, 1}}, where ai describes the activation
status of pump pi. Note that ai = 1 does not necessarily corresponds to an active
pump, as the pump might be broken. The backup pump is turned on, as soon as
the water level falls below 2.1m and can not fail. The failure and repair times of
the three normal pumps follow the probability distributions indicated in Table 4.

While the pump activation can be chosen by the RL agent at the beginning
of every simulation run and after every sampling time tS = 10 from the action
set A, the service level is determined by the safety and resilience shield (cf.
Table 1). We consider the following service levels S = {sfull , smid , sdeg} with
sfull = 0.3, smid = 0.2, and sdeg = 0.15. Note that setting smid to a fixed value,
represents a simplification of the model, such that not necessarily the maximum
possible demand as is chosen by the RL agent in case hdeg < h ≤ hfull .

We set the remaining parameters of the safety and resilience contracts as
follows: the minimum level to hmin = 2m in the safety contract and set hfull =
5m and hdeg = 4m in the resilience contract. The maximum cost c accepted is
given by 0.225 · tmax, i.e. in average slightly more than 2 pumps working.
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5.2 Settings for Simulink and SMC-based learning

We run Simulink with a variable-step solver and a maximum step size of 0.06
in combination with an explicit Runge-Kutta method for solving differential
equations (ode45). We use the parallel version of Simulink, however note that Q-
learning does not support parallelization. For Deep Q-Learning, we use a default
MATLAB Deep Q-Network agent (DQN agent), which uses a neural network
which consists of six layers: an input layer for observations, two fully connected
layers each followed by ReLU activation layer, and a fully connected output
layer. The neural network is a multi-output critic, featuring individual outputs
corresponding to each possible discrete action. Each output provides the Q-value
for taking the corresponding action based on the current observation. Contrary
to the default settings, we set the number of nodes in the hidden layers to 512
instead of 256. To improve the convergence of learning, Simulink uses a target
critic and memory replay as introduced in [43]. We apply default smoothing, with
a TargetSmoothFactor of 10−3 and set the ExperienceBufferLength to 100 000
and MiniBatchSize to 256.

HYPEG ML2 uses Q-learning, as proposed in [44] on the discretized state-
space of the hybrid Petri-net modeling the intelligent water distribution system
with stochastic pump failures and repairs, as presented in [2]. SMC-based learn-
ing, as proposed in [44], evaluates every simulation run w.r.t. a STL property
and during the training period provides a single reward, i.e. either 1 or −1, at the
end of a simulation run, i.e. tmax . HYPEG ML uses a fixed number of 3 million
training runs and finishes every run before evaluating the validity of the STL
property. In contrast, Simulink finishes the training period as soon as the prop-
erty is fulfilled in the last 100 training runs. Due to the duration of simulation
runs in Simulink, we have set the maximum number of training runs to 5000.
We compare the results obtained via two learning methods, i.e., Q-learning and
Deep Q-learning.

For both methods in Simulink two different reward distributions are applied:
(i) one reward is given based on the satisfaction of the STL property at the end
of a simulation run, (ii) at each sample time tS a reward is given if the property
is not violated yet. In both cases, if the property is violated, the current run is
aborted and the agent receives a negative reward.

The confidence intervals in both tools are computed after 5000 simulation
runs with confidence level λ = 0.95.

If Q-learning is used, the observation space must be discretized by both,
Simulink and HYPEG ML. The continuous variables are discretized to the first
decimal place in HYPEG ML and Simulink. The observation space in Simulink
with Q-learning had to be restricted to the water level h and the accumulated
cost , as training in Simulink is not efficient enough to identify optimal results
for a large observation space. In contrast, HYPEG ML uses the full state-space
as observation space. Hence, it keeps track of the time that has elapsed since a
pump has switched state. The Deep Q-learning agent in Simulink works directly

2 https://zivgitlab.uni-muenster.de/ag-sks/tools/hypeg

https://zivgitlab.uni-muenster.de/ag-sks/tools/hypeg
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Table 5: Estimated confidence intervals using Wilson score CI for Φr, for learned
decisions of the action set A, different time bounds and 5000 simulation runs.

tmax 24 h 48 h 72 h 96 h

H
Y

P
E

G
M

L

Q
-le

ar
n

on
e midpoint 0.0004 0.003 0.002 0.002

CI [0.000,0.0008] [0.001,0.004] [0.0006,0.003] [0.0007,0.003]
train time 1156.7 s 1861.5 s 3235.6 s 3669.3 s
train. runs 3 000 000 3 000 000 3 000 000 3 000 000
sim. time 2.4 s 3.1 s 5.4 s 6.4 s

Si
m

ul
in

k

Q
-le

ar
n

on
e midpoint 0.0088 0.0495 0.1027 0.3435

CI [0.006,0.0113] [0.044,0.0555] [0.094,0.1111] [0.330,0.3567]
train. time 478.6 s 2645.3 s 3642.7 s 3906.1 s
train. runs 1179 5000 5000 5000
sim. time 907.3 s 1062.2 s 1508.2 s 1718.3 s

Q
-le

ar
n

m
ul

t midpoint 0.0194 0.0436 0.0539 0.0859
CI [0.016,0.0232] [0.038,0.0492] [0.048,0.0602] [0.078,0.0937]

train. time 402.9 s 2985.4 s 3697.5 s 3745.8 s
train. runs 1152 5000 5000 5000
sim. time 740.5 s 1128.3 s 1285.2 s 1498.9 s

D
Q

L
on

e midpoint 0.0050 0.0008 0.0004 0.0004
CI [0.003,0.0069] [0.000,0.0015] [0.000,0.0008] [0.000,0.0008]

train. time 881.0 s 648.2 s 396.4 s 676.6 s
train. runs 2919 2092 1789 1962
sim. time 463.1 s 456.7 s 558.8 s 461.2 s

D
Q

L
m

ul
t midpoint 0.0004 0.0004 0.0268 0.0012

CI [0.000,0.0008] [0.000,0.0008] [0.022,0.0312] [0.0003,0.002]
train. time 347.9 s 310.0 s 1672.1 s 1477.5 s
train. runs 2565 2080 5000 4012
sim. time 450.1 s 452.7 s 480.3 s 482.8 s

on the continuous state space. Its observations consists of the current pump
status, the times since a pump has last switched state, the current water level
and the accumulated cost.

5.3 Optimizing Resilience

Similar to [2], resilience is formalized in terms of the STL property Φr, as shown
in Table 3. We use SMC-based learning to optimize the probability that Φr holds,
using the runtime monitoring subsystem, explained in Section 4.5 to ensure that
the safety and resilience contracts hold. We compare results obtained from the
statistical model checker HYPEG ML with results obtained from Simulink.

All results are summarized in Table 5. It can be seen that the Simulink results
obtained with Q-learning with either one reward per simulation run or with
multiple rewards differ considerably w.r.t. results obtained with Deep Q-learning
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in Simulink. Deep Q-learning is able to achieve considerably smaller probabilities,
which is desirable, as we defined resilience as property Φr to be minimized. We
believe that the number of training runs is too small and the discretization in
Simulink is too coarse to explore the state-space sufficiently with Q-learning. For
an infinite number of training runs and a converging discretization, Q-learning
is guaranteed to compute optimal probabilities.

Note that HYPEG ML is able to perform considerably more training runs in
reasonable time and has a larger observation space, which results in lower mid-
points compared to Q-learning in Simulink. Applying Q-learning within Simulink
suffers from the reduced state-space and the long training and simulation times
per run. Hence, Q-learning within Simulink is not able to efficiently compute
(near-)optimal probabilities as computed by HYPEG ML in this setting. We as-
sume that the performance difference between both simulators stems from the
fact that HYPEG ML applies discrete-event simulation, which is especially fast
when used on piece-wise constant differential equations. In contrast, Simulink
optimizes simulation accuracy in complex dynamic systems with a potentially
high computational overhead. Note that the maximum step size in Simulink is
chosen relatively small to ensure consistent results in the validation. Increasing
the step size will improve performance, however our experiments have shown
that the magnitude of feasible training runs does not change.

While Deep Q-learning can learn directly on the continuous observation
space, it lacks convergence guarantees and the robustness of the approach, as
well as the reproducibility of the results are subject to many factors, e.g., the
neural network architecture and the choice of hyper-parameters [27].

The result obtained by HYPEG ML with Q-learning for tmax = 24h matches
the confidence intervals computed by Deep Q-learning for multiple rewards. For
larger tmax Simulink with Deep Q-learning and one reward computes confidence
intervals which overlap with the confidence intervals computed by HYPEG ML.
However note that Deep Q-learning achieves smaller midpoints for tmax > 24 h.

While Q-learning in Simulink achieves lower midpoints with multiple rewards,
the impact of the reward structure with Deep Q-learning is unclear.

Note that the simulation times in HYPEG ML are much smaller than all simu-
lation times in Simulink. The fact that HYPEG ML is able to simulate individual
runs much faster than Simulink also translates to the training time per run. This
makes it difficult to compare training times between HYPEG ML and Simulink.
The chosen termination condition of 5000 runs in Simulink yields comparable
training times to HYPEG ML with 3 million runs, however with larger midpoints.
Only in case tmax = 24h Simulink with Q-learning terminates before 5000 runs
and its training is about twice as fast as HYPEG ML.

Deep Q-learning takes considerably less training runs than Q-learning in
Simulink. The number of training runs varies for all tmax , which in turn leads
to varying training times. Only the case with multiple rewards for tmax = 72h
uses 5000 training runs and computes a large midpoint. This is attributed to the
lack of robustness of Deep Q-learning.
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Table 6: Estimated confidence intervals using Wilson score CI for Φp for learned
decisions of the action set A.

tmax 24 h 48 h 72 h 96 h

H
Y

P
E

G
M

L

Q
-le

ar
n

on
e midpoint 0.001 0.001 0.002 0.002

CI [0.000,0.001] [0.000,0.001] [0.001,0.003] [0.001,0.003]
train time 1017.9 s 1933.4 s 2949.2 s 3775.8 s
train. runs 3 000 000 3 000 000 3 000 000 3 000 000
sim. time 1.9 s 3.1 s 5.3 s 6.6 s

Si
m

ul
in

k D
Q

L
on

e midpoint 0.028 0.014 0.005 0.001
CI [0.024,0.033] [0.011,0.017] [0.003,0.007] [0.000,0.001]

train. time 1061.0 s 1541.9 s 1716.0 s 693.3 s
train. runs 3499 4775 5000 1979
sim. time 550.3 s 475.7 s 561.4 s 505.1 s

D
Q

L
m

ul
t midpoint 0.081 0.024 0.032 0.022

CI [0.073,0.088] [0.020,0.028] [0.027,0.037] [0.018,0.026]
train. time 734.2 s 1620.3 s 1753.4 s 1906.3 s
train. runs 2442 5000 5000 5000
sim. time 500.5 s 467.9 s 480.2 s 491.9 s

5.4 Optimizing Performance

The second property of interest is given by the STL property Φp (cf. Table 3),
i.e. limiting the energy cost and still providing the full service level. Note that
our recent work [2] optimized performance for 0.2 · tmax, however Simulink was
not able to optimize this property, as the value of 0.2 does not allow for any
error in the taken decisions. Relaxing the problem to 0.225 · tmax instead allows
for taking some non-optimal decisions.

Results obtained from Simulink and HYPEG ML are summarized in Table 6.
We recomputed optimal performance with HYPEG ML for the adapted problem
and compare with results obtained by Simulink for Deep Q-learning with a single
reward and with multiple rewards per simulation run. We did not consider Q-
learning for performance in Simulink, as Deep Q-learning performed much better
when optimizing resilience.

It can be seen, that for larger time-bounds tmax = 72h and tmax = 96h the
computed confidence intervals of HYPEG ML and Simulink, in case one reward
is distributed, overlap. For the smaller time-bound, none of the computed confi-
dence intervals overlap. Since we are able to perform 3 million training runs in
HYPEG ML in reasonable time, the computed midpoints in HYPEG ML are al-
most always smaller than those computed by Simulink with at most 5000 training
runs. Due to the convergence guarantees available for Q-learning in combination
with a large number of training runs we suspect, that the lower midpoints actu-
ally indicate better results and are not caused by a statistical error. Hence, we
assume that the quality of the Simulink results suffers from the relatively long
training times, which have in turn lead to our restriction to 5000 runs. Since no
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convergence guarantees exist for Deep Q-learning, it cannot be concluded that
a larger maximum of training runs automatically leads to smaller midpoints.

Observe that performance results obtained with one reward per run are
smaller than those obtained with multiple rewards. We suspect that for opti-
mizing performance, multiple rewards stimulate cost-expensive behavior in the
beginning which benefits resilience, however incurs higher cost towards the end.

6 Conclusion

Building on recent advances in deductive verification and SMC-based learning,
we present a unified approach to optimize resilience and performance in Simulink
models while ensuring safety and safety-relevant resilience properties via con-
tracts. We use a transformation from Simulink to dL and deductive verification
as proposed in [35,3] to ensure that the overall system is safe and resilient if
learning components adhere to their contracts. Then, we use these contracts as
a shield which restrict the action space of the learning method to safe actions.
To do this, we have extended an existing Simulink model with stochastic failure
and repair components and a performability subsystem, and have used this for
SMC-based learning, as proposed in [44].

We apply (Deep) Q-learning in Simulink with either a single reward at the
end of the simulation run, or with multiple rewards, i.e., one after each sampling
time. Results are validated with those obtained via a recent extension of the
statistical model checker HYPEG for a similar model, as presented in [2].

The evaluation of the results shows that in this case study Q-learning is not
able to optimize resilience on the considered Simulink observation space. We
believe that the required number of training runs would yield excessive training
times. While Deep Q-learning performs much better and is able to optimize
resilience and performance efficiently, it requires a larger effort for identifying a
suitable neural network architecture. Note that an efficient SMC-based learning
tool like HYPEG ML helped to identify the neural network applied.

In future work, we plan to apply our approach to other case studies and
to further investigate the scalability of both the deductive verification and the
SMC-based learning. Furthermore, we plan to investigate the effect of more fine-
granular service levels on the learning results.
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